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1 Introduction

1.1 What is Statistics

Your company has created a new drug that may cure arthritis. How would you conduct
a test to confirm the drug’s effectiveness?
The latest sales data have just come in, and your boss wants you to prepare a report for
management on places where the company could improve its business. What should you
look for? What should you notlook for?
You and a friend are at a baseball game, and out of the blue he offers you a bet that
neither team will hit a home run in that game. Should you take the bet?
You want to conduct a poll on whether your school should use its funding to build a new
athletic complex or a new library. How many people do you have to poll? How do you
ensure that your poll is free of bias? How do you interpret your results?
A widget maker in your factory that normally breaks 4 widgets for every 100 it produces
has recently started breaking 5 widgets for every 100. When is it time to buy a new
widget maker? (And just what is a widget, anyway?)

These are some of the many real-world examples that require the use of statistics.

1.1.1 General Definition

Statistics, in short, is the study of data1. It includes descriptive statistics (the study of
methods and tools for collecting data, and mathematical models to describe and interpret
data) and inferential statistics (the systems and techniques for making probability-based
decisions and accurate predictions based on incomplete (sample) data).

1.1.2 Etymology

As its name implies, statistics has its roots in the idea of "the state of things". The word
itself comes from the ancient Latin term statisticum collegium, meaning "a lecture on the
state of affairs". Eventually, this evolved into the Italian word statista, meaning "statesman",
and the German word Statistik, meaning "collection of data involving the State". Gradually,
the term came to be used to describe the collection of any sort of data.

1 http://en.wikibooks.org/wiki/data
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Introduction

1.1.3 Statistics as a subset of mathematics

As one would expect, statistics is largely grounded in mathematics, and the study of statis-
tics has lent itself to many major concepts in mathematics: probability, distributions, sam-
ples and populations, the bell curve, estimation, and data analysis.

1.1.4 Up ahead

Up ahead, we will learn about subjects in modern statistics and some practical applications
of statistics. We will also lay out some of the background mathematical concepts required
to begin studying statistics.

1.2 Subjects in Modern Statistics

A remarkable amount of today’s modern statistics comes from the original work of R.A.
Fisher2 in the early 20th Century. Although there are a dizzying number of minor disci-
plines in the field, there are some basic, fundamental studies.

The beginning student of statistics will be more interested in one topic or another depending
on his or her outside interest. The following is a list of some of the primary branches of
statistics.

1.2.1 Probability Theory and Mathematical Statistics

Those of us who are purists and philosophers may be interested in the intersection between
pure mathematics and the messy realities of the world. A rigorous study of probabil-
ity—especially the probability distributions and the distribution of errors—can provide an
understanding of where all these statistical procedures and equations come from. Although
this sort of rigor is likely to get in the way of a psychologist (for example) learning and
using statistics effectively, it is important if one wants to do serious (i.e. graduate-level)
work in the field.

That being said, there is good reason for all students to have a fundamental understanding
of where all these "statistical techniques and equations" are coming from! We’re always
more adept at using a tool if we can understand why we’re using that tool. The challenge is
getting these important ideas to the non-mathematician without the student’s eyes glazing
over. One can take this argument a step further to claim that a vast number of students
will never actually use a t-test—he or she will never plug those numbers into a calculator
and churn through some esoteric equations—but by having a fundamental understanding
of such a test, he or she will be able to understand (and question) the results of someone
else’s findings.

2 http://en.wikipedia.org/wiki/Ronald%20Fisher
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Subjects in Modern Statistics

1.2.2 Design of Experiments

One of the most neglected aspects of statistics—and maybe the single greatest reason that
Statisticians drink—is Experimental Design. So often a scientist will bring the results of an
important experiment to a statistician and ask for help analyzing results only to find that a
flaw in the experimental design rendered the results useless. So often we statisticians have
researchers come to us hoping that we will somehow magically "rescue" their experiments.

A friend provided me with a classic example of this. In his psychology class he was required
to conduct an experiment and summarize its results. He decided to study whether music
had an impact on problem solving. He had a large number of subjects (myself included)
solve a puzzle first in silence, then while listening to classical music and finally listening to
rock and roll, and finally in silence. He measured how long it would take to complete each
of the tasks and then summarized the results.

What my friend failed to consider was that the results were highly impacted by a learning
effect he hadn’t considered. The first puzzle always took longer because the subjects were
first learning how to work the puzzle. By the third try (when subjected to rock and roll)
the subjects were much more adept at solving the puzzle, thus the results of the experiment
would seem to suggest that people were much better at solving problems while listening to
rock and roll!

The simple act of randomizing the order of the tests would have isolated the "learning effect"
and in fact, a well-designed experiment would have allowed him to measure both the effects
of each type of music and the effect of learning. Instead, his results were meaningless. A
careful experimental design can help preserve the results of an experiment, and in fact some
designs can save huge amounts of time and money, maximize the results of an experiment,
and sometimes yield additional information the researcher had never even considered!

1.2.3 Sampling

Similar to the Design of Experiments, the study of sampling allows us to find a most
effective statistical design that will optimize the amount of information we can collect while
minimizing the level of effort. Sampling is very different from experimental design however.
In a laboratory we can design an experiment and control it from start to finish. But often
we want to study something outside of the laboratory, over which we have much less control.

If we wanted to measure the population of some harmful beetle and its effect on trees,
we would be forced to travel into some forest land and make observations, for example:
measuring the population of the beetles in different locations, noting which trees they were
infesting, measuring the health and size of these trees, etc.

Sampling design gets involved in questions like "How many measurements do I have to
take?" or "How do I select the locations from which I take my measurements?" Without
planning for these issues, researchers might spend a lot of time and money only to discover
that they really have to sample ten times as many points to get meaningful results or that
some of their sample points were in some landscape (like a marsh) where the beetles thrived
more or the trees grew better.

5
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1.2.4 Modern Regression

Regression models relate variables to each other in a linear fashion. For example, if you
recorded the heights and weights of several people and plotted them against each other,
you would find that as height increases, weight tends to increase too. You would probably
also see that a straight line through the data is about as good a way of approximating the
relationship as you will be able to find, though there will be some variability about the line.
Such linear models are possibly the most important tool available to statisticians. They
have a long history and many of the more detailed theoretical aspects were discovered in the
1970s. The usual method for fitting such models is by "least squares" estimation, though
other methods are available and are often more appropriate, especially when the data are
not normally distributed.

What happens, though, if the relationship is not a straight line? How can a curve be fit to
the data? There are many answers to this question. One simple solution is to fit a quadratic
relationship, but in practice such a curve is often not flexible enough. Also, what if you
have many variables and relationships between them are dissimilar and complicated?

Modern regression methods aim at addressing these problems. Methods such as generalized
additive models, projection pursuit regression, neural networks and boosting allow for very
general relationships between explanatory variables and response variables, and modern
computing power makes these methods a practical option for many applications

1.2.5 Classification

Some things are different from others. How? That is, how are objects classified into their
respective groups? Consider a bank that is hoping to lend money to customers. Some
customers who borrow money will be unable or unwilling to pay it back, though most will
pay it back as regular repayments. How is the bank to classify customers into these two
groups when deciding which ones to lend money to?

The answer to this question no doubt is influenced by many things, including a customer’s
income, credit history, assets, already existing debt, age and profession. There may be other
influential, measurable characteristics that can be used to predict what kind of customer a
particular individual is. How should the bank decide which characteristics are important,
and how should it combine this information into a rule that tells it whether or not to lend
the money?

This is an example of a classification problem, and statistical classification is a large field
containing methods such as linear discriminant analysis, classification trees, neural networks
and other methods.

1.2.6 Time Series

Many types of research look at data that are gathered over time, where an observation taken
today may have some correlation with the observation taken tomorrow. Two prominent
examples of this are the fields of finance (the stock market) and atmospheric science.

6



Subjects in Modern Statistics

We’ve all seen those line graphs of stock prices as they meander up and down over time.
Investors are interested in predicting which stocks are likely to keep climbing (i.e. when to
buy) and when a stock in their portfolio is falling. It is easy to be misled by a sudden jolt
of good news or a simple "market correction" into inferring—incorrectly—that one or the
other is taking place!

In meteorology scientists are concerned with the venerable science of predicting the weather.
Whether trying to predict if tomorrow will be sunny or determining whether we are expe-
riencing true climate changes (i.e. global warming) it is important to analyze weather data
over time.

1.2.7 Survival Analysis

Suppose that a pharmaceutical company is studying a new drug which it is hoped will cause
people to live longer (whether by curing them of cancer, reducing their blood pressure or
cholesterol and thereby their risk of heart disease, or by some other mechanism). The
company will recruit patients into a clinical trial, give some patients the drug and others a
placebo, and follow them until they have amassed enough data to answer the question of
whether, and by how long, the new drug extends life expectancy.

Such data present problems for analysis. Some patients will have died earlier than others,
and often some patients will not have died before the clinical trial completes. Clearly,
patients who live longer contribute informative data about the ability (or not) of the drug
to extend life expectancy. So how should such data be analyzed?

Survival analysis provides answers to this question and gives statisticians the tools necessary
to make full use of the available data to correctly interpret the treatment effect.

1.2.8 Categorical Analysis

In laboratories we can measure the weight of fruit that a plant bears, or the temperature
of a chemical reaction. These data points are easily measured with a yardstick or a ther-
mometer, but what about the color of a person’s eyes or her attitudes regarding the taste
of broccoli? Psychologists can’t measure someone’s anger with a measuring stick, but they
can ask their patients if they feel "very angry" or "a little angry" or "indifferent". Entirely
different methodologies must be used in statistical analysis from these sorts of experiments.
Categorical Analysis is used in a myriad of places, from political polls to analysis of census
data to genetics and medicine.

1.2.9 Clinical Trials

In the United States, the FDA3 requires that pharmaceutical companies undergo rigorous
procedures called Clinical Trials4 and statistical analyses to assure public safety before

3 http://en.wikipedia.org/wiki/FDA
4 http://en.wikipedia.org/wiki/Clinical%20Trials
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allowing the sale of use of new drugs. In fact, the pharmaceutical industry employs more
statisticians than any other business!

1.2.10 Further reading

• Econometric Theory5

• Classification6

1.3 Why Should I Learn Statistics?

Imagine reading a book for the first few chapters and then becoming able to get a sense of
what the ending will be like - this is one of the great reasons to learn statistics. With the
appropriate tools and solid grounding in statistics, one can use a limited sample (e.g. read
the first five chapters of Pride & Prejudice) to make intelligent and accurate statements
about the population (e.g. predict the ending of Pride & Prejudice). This is what knowing
statistics and statistical tools can do for you.

In today’s information-overloaded age, statistics is one of the most useful subjects anyone
can learn. Newspapers are filled with statistical data, and anyone who is ignorant of statis-
tics is at risk of being seriously misled about important real-life decisions such as what
to eat, who is leading the polls, how dangerous smoking is, etc. Knowing a little about
statistics will help one to make more informed decisions about these and other important
questions. Furthermore, statistics are often used by politicians, advertisers, and others to
twist the truth for their own gain. For example, a company selling the cat food brand "Cato"
(a fictitious name here), may claim quite truthfully in their advertisements that eight out
of ten cat owners said that their cats preferred Cato brand cat food to "the other leading
brand" cat food. What they may not mention is that the cat owners questioned were those
they found in a supermarket buying Cato.

“The best thing about being a statistician is that you get to play in everyone else’s backyard.”
John Tukey, Princeton University7

More seriously, those proceeding to higher education will learn that statistics is the most
powerful tool available for assessing the significance of experimental data, and for drawing
the right conclusions from the vast amounts of data faced by engineers, scientists, sociolo-
gists, and other professionals in most spheres of learning. There is no study with scientific,
clinical, social, health, environmental or political goals that does not rely on statistical
methodologies. The basic reason for that is that variation is ubiquitous in nature and
probability8 and statistics9 are the fields that allow us to study, understand, model,
embrace and interpret variation.

5 http://en.wikibooks.org/wiki/Econometric%20Theory
6 http://en.wikibooks.org/wiki/Optimal%20Classification%20
7 http://en.wikipedia.org/wiki/John%20W.%20Tukey%20
8 http://en.wikibooks.org/wiki/probability
9 http://en.wikibooks.org/wiki/statistics
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What Do I Need to Know to Learn Statistics?

1.3.1 See Also

UCLA Brochure on Why Study Probability & Statistics10

1.4 What Do I Need to Know to Learn Statistics?

Statistics is a diverse subject and thus the mathematics that are required depend on the
kind of statistics we are studying. A strong background in linear algebra11 is needed for
most multivariate statistics, but is not necessary for introductory statistics. A background
in Calculus12 is useful no matter what branch of statistics is being studied, but is not
required for most introductory statistics classes.

At a bare minimum the student should have a grasp of basic concepts taught in Algebra13

and be comfortable with "moving things around" and solving for an unknown. Most of the
statistics here will derive from a few basic things that the reader should become acquainted
with.

1.4.1 Absolute Value

|x| ≡
{
x, x≥ 0
−x, x < 0

If the number is zero or positive, then the absolute value of the number is simply the same
number. If the number is negative, then take away the negative sign to get the absolute
value.

Examples

• |42| = 42
• |-5| = 5
• |2.21| = 2.21

1.4.2 Factorials

A factorial is a calculation that gets used a lot in probability. It is defined only for integers
greater-than-or-equal-to zero as:

10 http://www.stat.ucla.edu/%7Edinov/WhyStudyStatisticsBrochure/WhyStudyStatisticsBrochure.
html

11 http://en.wikibooks.org/wiki/Algebra%23Linear_algebra
12 http://en.wikibooks.org/wiki/Calculus
13 http://en.wikibooks.org/wiki/Algebra
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Introduction

n!≡
{
n · (n−1)!, n≥ 1
1, n= 0

Examples

In short, this means that:

0! = 1 = 1
1! = 1 · 1 = 1
2! = 2 · 1 = 2
3! = 3 · 2 · 1 = 6
4! = 4 · 3 · 2 · 1 = 24
5! = 5 · 4 · 3 · 2 · 1 = 120
6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

1.4.3 Summation

The summation (also known as a series) is used more than almost any other technique in
statistics. It is a method of representing addition over lots of values without putting + after
+. We represent summation using a big uppercase sigma:

∑
.

Examples

Very often in statistics we will sum a list of related variables:

n∑
i=0

xi = x0 +x1 +x2 + · · ·+xn

Here we are adding all the x variables (which will hopefully all have values by the time we
calculate this). The expression below the

∑
(i=0, in this case) represents the index variable

and what its starting value is (i with a starting value of 0) while the number above the
∑

represents the number that the variable will increment to (stepping by 1, so i = 0, 1, 2, 3,
and then 4). Another example:

4∑
i=1

2i= 2(1) + 2(2) + 2(3) + 2(4) = 2 + 4 +6 + 8 = 20

Notice that we would get the same value by moving the 2 outside of the summation (perform
the summation and then multiply by 2, rather than multiplying each component of the
summation by 2).

10



What Do I Need to Know to Learn Statistics?

Infinite series

There is no reason, of course, that a series has to count on any determined, or even finite
value—it can keep going without end. These series are called "infinite series" and sometimes
they can even converge to a finite value, eventually becoming equal to that value as the
number of items in your series approaches infinity (∞).

Examples

∑∞
k=0 r

k = 1
1−r , |r|< 1

This example is the famous geometric series14. Note both that the series goes to ∞
(infinity, that means it does not stop) and that it is only valid for certain values of the
variable r. This means that if r is between the values of -1 and 1 (-1 < r < 1) then the
summation will get closer to (i.e., converge on) 1 / 1-r the further you take the series out.

1.4.4 Linear Approximation

v / α 0.20 0.10 0.05 0.025 0.01 0.005
40 0.85070 1.30308 1.68385 2.02108 2.42326 2.70446
50 0.84887 1.29871 1.67591 2.00856 2.40327 2.67779
60 0.84765 1.29582 1.67065 2.00030 2.39012 2.66028
70 0.84679 1.29376 1.66691 1.99444 2.38081 2.64790
80 0.84614 1.29222 1.66412 1.99006 2.37387 2.63869
90 0.84563 1.29103 1.66196 1.98667 2.36850 2.63157
100 0.84523 1.29007 1.66023 1.98397 2.36422 2.62589

Student-
t Distri-
bution
at vari-
ous crit-
ical val-
ues with
varying
degrees
of free-
dom.

Let us say that you are looking at a table of values, such as the one above. You want to
approximate (get a good estimate of) the values at 63, but you do not have those values

14 http://en.wikipedia.org/wiki/Geometric%20series
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Introduction

on your table. A good solution here is use a linear approximation to get a value which is
probably close to the one that you really want, without having to go through all of the
trouble of calculating the extra step in the table.

f (xi)≈
f
(
xdie

)
−f

(
xbic

)
xdie−xbic

·
(
xi−xbic

)
+f

(
xbic

)

This is just the equation for a line applied to the table of data. xi represents the data point
you want to know about, xbic is the known data point beneath the one you want to know
about, and xdie is the known data point above the one you want to know about.

Examples

Find the value at 63 for the 0.05 column, using the values on the table above.

First we confirm on the above table that we need to approximate the value. If we know it
exactly, then there really is no need to approximate it. As it stands this is going to rest on
the table somewhere between 60 and 70. Everything else we can get from the table:

f(63)≈ f(70)−f(60)
70−60 · (63−60) +f(60) = 1.66691−1.67065

10 ·3 + 1.67065 = 1.669528

Using software, we calculate the actual value of f(63) to be 1.669402, a difference of around
0.00013. Close enough for our purposes.

12



2 Different Types of Data

Data are assignments of values onto observations of events and objects. They can be
classified by their coding properties and the characteristics of their domains and their ranges.

2.1 Identifying data type

When a given data set is numerical in nature, it is necessary to carefully distinguish the
actual nature of the variable being quantified. Statistical tests are generally specific for the
kind of data being handled.

2.1.1 Data on a nominal (or categorical) scale

Identifying the true nature of numerals applied to attributes that are not "measures" is
usually straightforward and apparent. Examples in everyday use include road, car, house,
book and telephone numbers. A simple test would be to ask if re-assigning the numbers
among the set would alter the nature of the collection. If the plates on a car are changed,
for example, it still remains the same car.

2.1.2 Data on an Ordinal Scale

An ordinal scale is a scale with ranks. Those ranks only have sense in that they are ordered,
that is what makes it ordinal scale. The distance [rank n] minus [rank n-1] is not guaranteed
to be equal to [rank n-1] minus [rank n-2], but [rank n] will be greater than [rank n-1] in
the same way [rank n-1] is greater than [rank n-2] for all n where [rank n], [rank n-1], and
[rank n-2] exist. Ranks of an ordinal scale may be represented by a system with numbers
or names and an agreed order.

We can illustrate this with a common example: the Likert scale. Consider five possible
responses to a question, perhaps Our president is a great man, with answers on this scale

Response: Strongly
disagree

Disagree Neither
agree
nor dis-
agree

Agree Strongly
agree

Code: 1 2 3 4 5

13



Different Types of Data

Here the answers are a ranked scale reflected in the choice of numeric code. There is however
no sense in which the distance between Strongly agree and Agree is the same as between
Strongly disagree and Disagree.

Numerical ranked data should be distinguished from measurement data.

2.1.3 Measurement data

Numerical measurements exist in two forms, Meristic and continuous, and may present
themselves in three kinds of scale: interval, ratio and circular.

Meristic or discrete variables are generally counts and can take on only discrete values.
Normally they are represented by natural numbers. The number of plants found in a
botanist’s quadrant would be an example. (Note that if the edge of the quadrant falls
partially over one or more plants, the investigator may choose to include these as halves,
but the data will still be meristic as doubling the total will remove any fraction).

Continuous variables are those whose measurement precision is limited only by the inves-
tigator and his equipment. The length of a leaf measured by a botanist with a ruler will
be less precise than the same measurement taken by micrometer. (Notionally, at least, the
leaf could be measured even more precisely using a microscope with a graticule.)

Interval Scale Variables measured on an interval scale have values in which differences
are uniform and meaningful but ratios will not be so. An oft quoted example is that of the
Celsius scale of temperature. A difference between 5° and 10° is equivalent to a difference
between 10° and 15°, but the ratio between 15° and 5° does not imply that the former is
three times as warm as the latter.

Ratio Scale Variables on a ratio scale have a meaningful zero point. In keeping with the
above example one might cite the Kelvin temperature scale. Because there is an absolute
zero, it is true to say that 400°K is twice as warm as 200°K, though one should do so with
tongue in cheek. A better day-to-day example would be to say that a 180 kg Sumo wrestler
is three times heavier than his 60 kg wife.

Circular Scale When one measures annual dates, clock times and a few other forms of
data, a circular scale is in use. It can happen that neither differences nor ratios of such
variables are sensible derivatives, and special methods have to be employed for such data.

...... :)

2.2 Primary and Secondary Data

Data can be classified as either primary or secondary.

2.2.1 Primary Data

Primary data means original data that has been collected specially for the purpose in
mind. It means when an authorized organization, investigator or an enumerator collects

14



Qualitative data

the data for the first time from the original source. Data collected this way is called primary
data.

Research where one gathers this kind of data is referred to as ’field research.

For example: your own questionnaire.

2.2.2 Secondary Data

Secondary data is data that has been collected for another purpose. When we use Sta-
tistical Method with Primary Data from another purpose for our purpose we refer to it as
Secondary Data. It means that one purpose’s Primary Data is another purpose’s Secondary
Data. Secondary data is data that is being reused. Usually in a different context.

Research where one gathers this kind of data is referred to as ’desk research.

For example: data from a book.

2.2.3 Why Classify Data This Way?

Knowing how the data was collected allows critics of a study to search for bias in how it was
conducted. A good study will welcome such scrutiny. Each type has its own weaknesses
and strengths. Primary Data is gathered by people who can focus directly on the purpose
in mind. This helps ensure that questions are meaningful to the purpose but can introduce
bias in those same questions. Secondary data doesn’t have the privilege of this focus but is
only susceptible to bias introduced in the choice of what data to reuse. Stated another way,
those who gather Primary Data get to write the questions. Those who gather secondary
data get to pick the questions.

<< Different Types of Data1 | Statistics2 |>> Qualitative and Quantitative3

Quantitative and qualitative data are two types of data.

2.3 Qualitative data

Qualitative data is a categorical measurement expressed not in terms of numbers, but rather
by means of a natural language description. In statistics, it is often used interchangeably
with "categorical" data.

For example: favorite color = "yellow"
height = "tall"

1 Chapter 2 on page 13
2 http://en.wikibooks.org/wiki/Statistics
3 Chapter 2.2.3 on page 15
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Different Types of Data

Although we may have categories, the categories may have a structure to them. When there
is not a natural ordering of the categories, we call these nominal categories. Examples
might be gender, race, religion, or sport.

When the categories may be ordered, these are called ordinal variables. Categorical vari-
ables that judge size (small, medium, large, etc.) are ordinal variables. Attitudes (strongly
disagree, disagree, neutral, agree, strongly agree) are also ordinal variables, however we may
not know which value is the best or worst of these issues. Note that the distance between
these categories is not something we can measure.

2.4 Quantitative data

Quantitative data is a numerical measurement expressed not by means of a natural
language description, but rather in terms of numbers. However, not all numbers are
continuous and measurable. For example, the social security number is a number, but not
something that one can add or subtract.

For example: favorite color = "450 nm"
height = "1.8 m"

Quantitative data always are associated with a scale measure.

Probably the most common scale type is the ratio-scale. Observations of this type are on
a scale that has a meaningful zero value but also have an equidistant measure (i.e., the
difference between 10 and 20 is the same as the difference between 100 and 110). For
example, a 10 year-old girl is twice as old as a 5 year-old girl. Since you can measure
zero years, time is a ratio-scale variable. Money is another common ratio-scale quantitative
measure. Observations that you count are usually ratio-scale (e.g., number of widgets).

A more general quantitative measure is the interval scale. Interval scales also have a equidis-
tant measure. However, the doubling principle breaks down in this scale. A temperature of
50 degrees Celsius is not "half as hot" as a temperature of 100, but a difference of 10 degrees
indicates the same difference in temperature anywhere along the scale. The Kelvin tem-
perature scale, however, constitutes a ratio scale because on the Kelvin scale zero indicates
absolute zero in temperature, the complete absence of heat. So one can say, for example,
that 200 degrees Kelvin is twice as hot as 100 degrees Kelvin.

<< Different Types of Data4 | Statistics5

4 Chapter 2.1.3 on page 14
5 http://en.wikibooks.org/wiki/Statistics
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3 Methods of Data Collection

The main portion of Statistics is the display of summarized data. Data is initially collected
from a given source, whether they are experiments, surveys, or observation, and is presented
in one of four methods:

Textular Method

The reader acquires information through reading the gathered data.

Tabular Method

Provides a more precise, systematic and orderly presentation of data in rows or columns.

Semi-tabular Method

Uses both textual and tabular methods.

Graphical Method

The utilization of graphs is most effective method of visually presenting statistical results
or findings.

3.1 Experiments

Scientists try to identify cause-and-effect relationships because this kind of knowledge is
especially powerful, for example, drug A cures disease B. Various methods exist for detecting
cause-and-effect relationships. An experiment is a method that most clearly shows cause-
and-effect because it isolates and manipulates a single variable, in order to clearly show
its effect. Experiments almost always have two distinct variables: First, an independent
variable (IV) is manipulated by an experimenter to exist in at least two levels (usually
"none" and "some"). Then the experimenter measures the second variable, the dependent
variable (DV).

A simple example:

Suppose the experimental hypothesis that concerns the scientist is that reading a Wiki
will enhance knowledge. Notice that the hypothesis is really an attempt to state a causal
relationship like, "if you read a Wiki, then you will have enhanced knowledge." The an-
tecedent condition (reading a Wiki) causes the consequent condition (enhanced knowledge).
Antecedent conditions are always IVs and consequent conditions are always DVs in exper-
iments. So the experimenter would produce two levels of Wiki reading (none and some,
for example) and record knowledge. If the subjects who got no Wiki exposure had less
knowledge than those who were exposed to Wikis, it follows that the difference is caused
by the IV.

17
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So, the reason scientists utilize experiments is that it is the only way to determine causal
relationships between variables. Experiments tend to be artificial because they try to make
both groups identical with the single exception of the levels of the independent variable.

3.2 Sample Surveys

Sample surveys involve the selection and study of a sample of items from a population. A
sample is just a set of members chosen from a population, but not the whole population.
A survey of a whole population is called a census.

A sample from a population may not give accurate results but it helps in decision making.

3.2.1 Examples

Examples of sample surveys:

• Phoning the fifth person on every page of the local phonebook and asking them how long
they have lived in the area. (Systematic Sample)

• Dropping a quad. in five different places on a field and counting the number of wild
flowers inside the quad. (Cluster Sample)

• Selecting sub-populations in proportion to their incidence in the overall population. For
instance, a researcher may have reason to select a sample consisting 30% females and
70% males in a population with those same gender proportions. (Stratified Sample)

• Selecting several cities in a country, several neighbourhoods in those cities and several
streets in those neighbourhoods to recruit participants for a survey (Multi-stage sample)

The term random sample is used for a sample in which every item in the population is
equally likely to be selected.

3.2.2 Bias

While sampling is a more cost effective method of determining a result, small samples or
samples that depend on a certain selection method will result in a bias within the results.

The following are common sources of bias:

• Sampling bias or statistical bias, where some individuals are more likely to be selected
than others (such as if you give equal chance of cities being selected rather than weighting
them by size)

• Systemic bias, where external influences try to affect the outcome (e.g. funding organi-
zations wanting to have a specific result)

18
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3.3 Observational Studies

The most primitive method of understanding the laws of nature utilizes observational stud-
ies. Basically, a researcher goes out into the world and looks for variables that are associated
with one another. Notice that, unlike experiments, observational research had no Indepen-
dent Variables --- nothing is manipulated by the experimenter. Rather, observations (also
called correlations, after the statistical techniques used to analyze the data) have the equiv-
alent of two Dependent Variables.

Some of the foundations of modern scientific thought are based on observational research.
Charles Darwin, for example, based his explanation of evolution entirely on observations he
made. Case studies, where individuals are observed and questioned to determine possible
causes of problems, are a form of observational research that continues to be popular today.
In fact, every time you see a physician he or she is performing observational science.

There is a problem in observational science though --- it cannot ever identify causal relation-
ships because even though two variables are related both might be caused by a third, unseen,
variable. Since the underlying laws of nature are assumed to be causal laws, observational
findings are generally regarded as less compelling than experimental findings.

The key way to identify experimental studies is that they involve an intervention such as
the administration of a drug to one group of patients and a placebo to another group.
Observational studies only collect data and make comparisons.

Medicine is an intensively studied discipline, and not all phenomenon can be studies by
experimentation due to obvious ethical or logistical restrictions. Types of studies include:

Case series: These are purely observational, consisting of reports of a series of similar
medical cases. For example, a series of patients might be reported to suffer from bone
abnormalities as well as immunodeficiencies. This association may not be significant, oc-
curring purely by chance. On the other hand, the association may point to a mutation in
common pathway affecting both the skeletal system and the immune system.

Case-Control: This involves an observation of a disease state, compared to normal healthy
controls. For example, patients with lung cancer could be compared with their otherwise
healthy neighbors. Using neighbors limits bias introduced by demographic variation. The
cancer patients and their neighbors (the control) might be asked about their exposure
history (did they work in an industrial setting), or other risk factors such as smoking.
Another example of a case-control study is the testing of a diagnostic procedure against the
gold standard. The gold standard represents the control, while the new diagnostic procedure
is the "case." This might seem to qualify as an "intervention" and thus an experiment.

Cross-sectional: Involves many variables collected all at the same time. Used in epidemiol-
ogy to estimate prevalence, or conduct other surveys.

Cohort: A group of subjects followed over time, prospectively. Framingham study is classic
example. By observing exposure and then tracking outcomes, cause and effect can be
better isolated. However this type of study cannot conclusively isolate a cause and effect
relationship.

Historic Cohort: This is the same as a cohort except that researchers use an historic medical
record to track patients and outcomes.
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4 Data Analysis

Data analysis is one of the more important stages in our research. Without performing
exploratory analyses of our data, we set ourselves up for mistakes and loss of time.

Generally speaking, our goal here is to be able to "visualize" the data and get a sense of
their values. We plot histograms and compute summary statistics to observe the trends
and the distribution of our data.

4.1 Data Cleaning

’Cleaning’ refers to the process of removing invalid data points from a dataset.

Many statistical analyses try to find a pattern in a data series, based on a hypothesis or
assumption about the nature of the data. ’Cleaning’ is the process of removing those data
points which are either (a) Obviously disconnected with the effect or assumption which we
are trying to isolate, due to some other factor which applies only to those particular data
points. (b) Obviously erroneous, i.e. some external error is reflected in that particular data
point, either due to a mistake during data collection, reporting etc.

In the process we ignore these particular data points, and conduct our analysis on the
remaining data.

’Cleaning’ frequently involves human judgement to decide which points are valid and which
are not, and there is a chance of valid data points caused by some effect not sufficiently
accounted for in the hypothesis/assumption behind the analytical method applied.

The points to be cleaned are generally extreme outliers. ’Outliers’ are those points which
stand out for not following a pattern which is generally visible in the data. One way of
detecting outliers is to plot the data points (if possible) and visually inspect the resultant
plot for points which lie far outside the general distribution. Another way is to run the
analysis on the entire dataset, and then eliminating those points which do not meet mathe-
matical ’control limits’ for variability from a trend, and then repeating the analysis on the
remaining data.

Cleaning may also be done judgementally, for example in a sales forecast by ignoring his-
torical data from an area/unit which has a tendency to misreport sales figures. To take
another example, in a double blind medical test a doctor may disregard the results of a
volunteer whom the doctor happens to know in a non-professional context.

’Cleaning’ may also sometimes be used to refer to various other judgemental/mathematical
methods of validating data and removing suspect data.

The importance of having clean and reliable data in any statistical analysis cannot be
stressed enough. Often, in real-world applications the analyst may get mesmerised by the
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complexity or beauty of the method being applied, while the data itself may be unreliable
and lead to results which suggest courses of action without a sound basis. A good statis-
tician/researcher (personal opinion) spends 90% of his/her time on collecting and cleaning
data, and developing hypothesis which cover as many external explainable factors as pos-
sible, and only 10% on the actual mathematical manipulation of the data and deriving
results.
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5 Summary Statistics

5.1 Summary Statistics

The most simple example of statistics "in practice" is in the generation of summary statistics.
Let us consider the example where we are interested in the weight of eighth graders in a
school. (Maybe we’re looking at the growing epidemic of child obesity in America!) Our
school has 200 eighth graders, so we gather all their weights. What we have are 200 positive
real numbers.

If an administrator asked you what the weight was of this eighth grade class, you wouldn’t
grab your list and start reading off all the individual weights; it’s just too much information.
That same administrator wouldn’t learn anything except that she shouldn’t ask you any
questions in the future! What you want to do is to distill the information — these 200
numbers — into something concise.

What might we express about these 200 numbers that would be of interest? The most
obvious thing to do is to calculate the average or mean value so we know how much the
"typical eighth grader" in the school weighs. It would also be useful to express how much
this number varies; after all, eighth graders come in a wide variety of shapes and sizes! In
reality, we can probably reduce this set of 200 weights into at most four or five numbers
that give us a firm comprehension of the data set.

5.2 Averages

An average is simply a number that is representative of data. More particularly, it is a
measure of central tendency. There are several types of average. Averages are useful for
comparing data, especially when sets of different size are being compared. It acts as a
representative figure of the whole set of data.

Perhaps the simplest and commonly used average the arithmetic mean or more simply
mean1 which is explained in the next section.

Other common types of average are the median, the mode, the geometric mean, and
the harmonic mean, each of which may be the most appropriate one to use under different
circumstances.

Statistics2 | Summary Statistics3 | >> Mean, Median and Mode4

1 http://en.wikibooks.org/wiki/Statistics%3ASummary%2FAverages%2Fmean%23mean
2 http://en.wikibooks.org/wiki/Statistics
3 Chapter 5 on page 23
4 Chapter 5.2 on page 23
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5.2.1 Mean, Median and Mode

Mean

The mean, or more precisely the arithmetic mean, is simply the arithmetic average of a
group of numbers (or data set) and is shown using -bar symbol .̄ So the mean of the
variable x is x̄, pronounced "x-bar". It is calculated by adding up all of the values in a data
set and dividing by the number of values in that data set :x̄ =

∑
x

n .For example, take the
following set of data: {1,2,3,4,5}. The mean of this data would be:

x̄=
∑
x

n
= 1 + 2 + 3+ 4 + 5

5 = 15
5 = 3

Here is a more complicated data set: {10,14,86,2,68,99,1}. The mean would be calculated
like this:

x̄=
∑
x

n
= 10 + 14 + 86+ 2 + 68 + 99 + 1

7 = 280
7 = 40

Median

The median is the "middle value" in a set. That is, the median is the number in the center
of a data set that has been ordered sequentially.

For example, let’s look at the data in our second data set from above: {10,14,86,2,68,99,1}.
What is its median?

• First, we sort our data set sequentially: {1,2,10,14,68,85,99}
• Next, we determine the total number of points in our data set (in this case, 7.)
• Finally, we determine the central position of or data set (in this case, the 4th position),

and the number in the central position is our median - {1,2,10,14,68,85,99}, making 14
our median.

Helpful Hint:
An easy way to determine the central position or positions for any ordered set is to take
the total number of points, add 1, and then divide by 2. If the number you get is a whole
number, then that is the central position. If the number you get is a fraction, take the two
whole numbers on either side.

Because our data set had an odd number of points, determining the central position was
easy - it will have the same number of points before it as after it. But what if our data set
has an even number of points?

Let’s take the same data set, but add a new number to it: {1,2,10,14,68,85,99,100} What
is the median of this set?
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When you have an even number of points, you must determine the two central positions of
the data set. (See side box for instructions.) So for a set of 8 numbers, we get (8 + 1) / 2
= 9 / 2 = 4 1/2, which has 4 and 5 on either side.

Looking at our data set, we see that the 4th and 5th numbers are 14 and 68. From there,
we return to our trusty friend the mean to determine the median. (14 + 68) / 2 = 82 / 2
= 41. find the median of 2 , 4 , 6, 8 => firstly we must count the numbers to determine
its odd or even as we see it is even so we can write : M=4+6/2=10/2=5 5 is the median of
above sequentiall numbers.

Mode

The mode is the most common or "most frequent" value in a data set. Example: the mode
of the following data set (1, 2, 5, 5, 6, 3) is 5 since it appears twice. This is the most
common value of the data set. Data sets having one mode are said to be unimodal, with
two are said to be bimodal and with more than two are said to be multimodal . An
example of a unimodal dataset is {1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 9}. The mode for this data
set is 4. An example of a bimodal data set is {1, 2, 2, 3, 3}. This is because both 2 and 3
are modes. Please note: If all points in a data set occur with equal frequency, it is equally
accurate to describe the data set as having many modes or no mode.

Midrange

The midrange is the arithmetic mean strictly between the minimum and the maximum
value in a data set.

Relationship of the Mean, Median, and Mode

The relationship of the mean, median, and mode to each other can provide some information
about the relative shape of the data distribution. If the mean, median, and mode are
approximately equal to each other, the distribution can be assumed to be approximately
symmetrical. If the mean > median > mode, the distribution will be skewed to the left or
positively skewed. If the mean < median < mode, the distribution will be skewed to the
right or negatively skewed.

5.2.2 Questions

1. There is an old joke that states: "Using median size as a reference it’s perfectly possible
to fit four ping-pong balls and two blue whales in a rowboat." Explain why this statement
is true.

Statistics5 | Mean6

5 http://en.wikibooks.org/wiki/Statistics
6 Chapter 5.2 on page 23
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5.2.3 Geometric Mean

The Geometric Mean is calculated by taking the nth root of the product of a set of data.

x̃= n

√√√√ n∏
i=1

xi

For example, if the set of data was:

1,2,3,4,5

The geometric mean would be calculated:

5√1×2×3×4×5 = 5√120 = 2.61

Of course, with large n this can be difficult to calculate. Taking advantage of two properties
of the logarithm:

log(a · b) = log(a) + log(b)

log(an) = n · log(a)

We find that by taking the logarithmic transformation of the geometric mean, we get:

log
(

n
√
x1×x2×x3 · · ·xn

)
= 1
n

n∑
i=1

log(xi)

Which leads us to the equation for the geometric mean:

x̃= exp
(

1
n

n∑
i=1

log(xi)
)

5.2.4 When to use the geometric mean

The arithmetic mean is relevant any time several quantities add together to produce a total.
The arithmetic mean answers the question, "if all the quantities had the same value, what
would that value have to be in order to achieve the same total?"
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In the same way, the geometric mean is relevant any time several quantities multiply to-
gether to produce a product. The geometric mean answers the question, "if all the quantities
had the same value, what would that value have to be in order to achieve the same product?"

For example, suppose you have an investment which returns 10% the first year, 50% the
second year, and 30% the third year. What is its average rate of return? It is not the
arithmetic mean, because what these numbers mean is that on the first year your investment
was multiplied (not added to) by 1.10, on the second year it was multiplied by 1.50, and
the third year it was multiplied by 1.30. The relevant quantity is the geometric mean of
these three numbers.

It is known that the geometric mean is always less than or equal to the arithmetic mean
(equality holding only when A=B). The proof of this is quite short and follows from the fact
that (

√
(A)−

√
(B))2 is always a non-negative number. This inequality can be surprisingly

powerful though and comes up from time to time in the proofs of theorems in calculus.
Source7.

5.2.5 Harmonic Mean

The arithmetic mean cannot be used when we want to average quantities such as speed.

Consider the example below:

Example 1: The distance from my house to town is 40 km. I drove to town at a speed of
40 km per hour and returned home at a speed of 80 km per hour. What was my average
speed for the whole trip?.

Solution: If we just took the arithmetic mean of the two speeds I drove at, we would get
60 km per hour. This isn’t the correct average speed, however: it ignores the fact that I
drove at 40 km per hour for twice as long as I drove at 80 km per hour. To find the correct
average speed, we must instead calcuate the harmonic mean.

For two quantities A and B, the harmonic mean is given by: 2
1
A

+ 1
B

This can be simplified by adding in the denominator and multiplying by the reciprocal:
2

1
A

+ 1
B

= 2
B+A
AB

= 2AB
A+B

For N quantities: A, B, C......

Harmonic mean = N
1
A

+ 1
B

+ 1
C

+...

Let us try out the formula above on our example:

Harmonic mean = 2AB
A+B

Our values are A = 40, B = 80. Therefore, harmonic mean = 2×40×80
40+80 = 6400

120 ≈ 53.333

Is this result correct? We can verify it. In the example above, the distance between the
two towns is 40 km. So the trip from A to B at a speed of 40 km will take 1 hour. The trip

7 http://www.math.toronto.edu/mathnet/questionCorner/geomean.html
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from B to A at a speed to 80 km will take 0.5 hours. The total time taken for the round
distance (80 km) will be 1.5 hours. The average speed will then be 80

1.5 ≈ 53.33 km/hour.

The harmonic mean also has physical significance.

5.2.6 Relationships among Arithmetic, Geometric and Harmonic Mean

The Means mentioned above are realizations of the generalized mean

x̄(m) =
(

1
n
·
n∑
i=1
|xi|m

)1/m

and ordered this way:

Minimum= x̄(−∞)

< harmonicMean= x̄(−1)

< geometricMean= x̄(0)

< arithmeticMean= x̄(1)

<Maximum= x̄(∞)

5.3 Measures of dispersion

5.3.1 Range of Data

The range of a sample (set of data) is simply the maximum possible difference in the data,
i.e. the difference between the maximum and the minimum values. A more exact term for
it is "range width" and is usually denoted by the letter R or w. The two individual values
(the max. and min.) are called the "range limits". Often these terms are confused and
students should be careful to use the correct terminology.

For example, in a sample with values 2 3 5 7 8 11 12, the range is 10 and the range limits
are 2 and 12.

The range is the simplest and most easily understood measure of the dispersion (spread) of
a set of data, and though it is very widely used in everyday life, it is too rough for serious
statistical work. It is not a "robust" measure, because clearly the chance of finding the
maximum and minimum values in a population depends greatly on the size of the sample
we choose to take from it and so its value is likely to vary widely from one sample to another.
Furthermore, it is not a satisfactory descriptor of the data because it depends on only two
items in the sample and overlooks all the rest. A far better measure of dispersion is the
standard deviation (s), which takes into account all the data. It is not only more robust
and "efficient" than the range, but is also amenable to far greater statistical manipulation.
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Nevertheless the range is still much used in simple descriptions of data and also in quality
control charts.

The mean range of a set of data is however a quite efficient measure (statistic) and can be
used as an easy way to calculate s. What we do in such cases is to subdivide the data into
groups of a few members, calculate their average range, R̄ and divide it by a factor (from
tables), which depends on n. In chemical laboratories for example, it is very common to
analyse samples in duplicate, and so they have a large source of ready data to calculate s.

s= R̄

k

(The factor k to use is given under standard deviation.)

For example: If we have a sample of size 40, we can divide it into 10 sub-samples of n=4
each. If we then find their mean range to be, say, 3.1, the standard deviation of the parent
sample of 40 items is appoximately 3.1/2.059 = 1.506.

With simple electronic calculators now available, which can calculate s directly at the touch
of a key, there is no longer much need for such expedients, though students of statistics
should be familiar with them.

5.3.2 Quartiles

The quartiles of a data set are formed by the two boundaries on either side of the median,
which divide the set into four equal sections. The lowest 25% of the data being found
below the first quartile value, also called the lower quartile (Q1). The median, or second
quartile divides the set into two equal sections. The lowest 75% of the data set should be
found below the third quartile, also called the upper quartile (Q3). These three numbers
are measures of the dispersion of the data, while the mean, median and mode are measures
of central tendency.

Examples

Given the set {1,3,5,8,9,12,24,25,28,30,41,50} we would find the first and third quartiles as
follows:

There are 12 elements in the set, so 12/4 gives us three elements in each quarter of the set.

So the first or lowest quartile is: 5, the second quartile is the median12, and the third or
upper quartile is 28.

However some people when faced with a set with an even number of elements (values) still
want the true median (or middle value), with an equal number of data values on each side
of the median (rather than 12 which has 5 values less than and 6 values greater than. This
value is then the average of 12 and 24 resulting in 18 as the true median (which is closer
to the mean of 19 2/3. The same process is then applied to the lower and upper quartiles,
giving 6.5, 18, and 29. This is only an issue if the data contains an even number of elements
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with an even number of equally divided sections, or an odd number of elements with an
odd number of equally divided sections.

Inter-Quartile Range

The inter quartile range is a statistic which provides information about the spread of a data
set, and is calculated by subtracting the first quartile from the third quartile), giving the
range of the middle half of the data set, trimming off the lowest and highest quarters. Since
the IQR is not affected at all by outliers8 in the data, it is a more robust measure of
dispersion than the range9

IQR = Q3 - Q1

Another useful quantile is the quintiles which subdivide the data into five equal sections.
The advantage of quintiles is that there is a central one with boundaries on either side of
the median which can serve as an average group. In a Normal distribution the boundaries
of the quintiles have boundaries ±0.253*s and ±0.842*s on either side of the mean (or
median),where s is the sample standard deviation. Note that in a Normal distribution the
mean, median and mode coincide.

Other frequently used quantiles are the deciles (10 equal sections) and the percentiles
(100 equal sections)

8 http://en.wikipedia.org/wiki/Outlier%20
9 http://en.wikibooks.org/wiki/Statistics%3ASummary%2FRange%20
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5.3.3 Variance and Standard Deviation

Figure 1: Probability density function for the normal distribution. The green
line is the standard normal distribution.

Measure of Scale

When describing data it is helpful (and in some cases necessary) to determine the spread
of a distribution. One way of measuring this spread is by calculating the variance or the
standard deviation of the data.

In describing a complete population, the data represents all the elements of the population.
As a measure of the "spread" in the population one wants to know a measure of the possible
distances between the data and the population mean. There are several options to do so.
One is to measure the average absolute value of the deviations. Another, called the variance,
measures the average square of these deviations.

A clear distinction should be made between dealing with the population or with a sample
from it. When dealing with the complete population the (population) variance is a constant,
a parameter which helps to describe the population. When dealing with a sample from the
population the (sample) variance is actually a random variable, whose value differs from
sample to sample. Its value is only of interest as an estimate for the population variance.

Population variance and standard deviation
Let the population consist of the N elements x1,...,xN. The (population) mean is:
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µ= 1
N

N∑
i=1

xi

.

The (population) variance σ2 is the average of the squared deviations from the mean or (xi
- µ)2 - the square of the value’s distance from the distribution’s mean.

σ2 = 1
N

N∑
i=1

(xi−µ)2

.

Because of the squaring the variance is not directly comparable with the mean and the data
themselves. The square root of the variance is called the Standard Deviation σ. Note that
σ is the root mean squared of differences between the data points and the average.

Sample variance and standard deviation
Let the sample consist of the n elements x1,...,xn, taken from the population. The (sample)
mean is:

x̄= 1
n

n∑
i=1

xi

.

The sample mean serves as an estimate for the population mean µ.

The (sample) variance s2 is a kind of average of the squared deviations from the (sample)
mean:

s2 = 1
n−1

n∑
i=1

(xi− x̄)2

.

Also for the sample we take the square root to obtain the (sample) standard deviation s

A common question at this point is "why do we square the numerator?" One answer is: to
get rid of the negative signs. Numbers are going to fall above and below the mean and,
since the variance is looking for distance, it would be counterproductive if those distances
factored each other out.
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Example

When rolling a fair die, the population consists of the 6 possible outcomes 1 to 6. A sample
may consist instead of the outcomes of 1000 rolls of the die.

The population mean is:

µ= 1
6(1 + 2 + 3+ 4 + 5 + 6) = 3.5

,

and the population variance:

σ2 = 1
6

n∑
i=1

(i−3.5)2 = 1
6(6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25) = 35

12 ≈ 2.917

The population standard deviation is:

σ =
√

35
12 ≈ 1.708

.

Notice how this standard deviation is somewhere in between the possible deviations.

So if we were working with one six-sided die: X = {1, 2, 3, 4, 5, 6}, then σ2 = 2.917.
We will talk more about why this is different later on, but for the moment assume that
you should use the equation for the sample variance unless you see something that would
indicate otherwise.

Note that none of the above formulae are ideal when calculating the estimate and they all
introduce rounding errors. Specialized statistical software packages use more complicated
logarithms that take a second pass10 of the data in order to correct for these errors.
Therefore, if it matters that your estimate of standard deviation is accurate, specialized
software should be used. If you are using non-specialized software, such as some popular
spreadsheet packages, you should find out how the software does the calculations and not
just assume that a sophisticated algorithm has been implemented.

For Normal Distributions

The empirical rule states that approximately 68 percent of the data in a normally distributed
dataset is contained within one standard deviation of the mean, approximately 95 percent

10 http://en.wikibooks.org/wiki/Handbook_of_Descriptive_Statistics/Measures_of_
Statistical_Variability/Variance
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of the data is contained within 2 standard deviations, and approximately 99.7 percent of
the data falls within 3 standard deviations.

As an example, the verbal or math portion of the SAT has a mean of 500 and a standard
deviation of 100. This means that 68% of test-takers scored between 400 and 600, 95% of
test takers scored between 300 and 700, and 99.7% of test-takers scored between 200 and
800 assuming a completely normal distribution (which isn’t quite the case, but it makes a
good approximation).

Robust Estimators

For a normal distribution the relationship between the standard deviation and the interquar-
tile range is roughly: SD = IQR/1.35.

For data that are non-normal, the standard deviation can be a terrible estimator of scale.
For example, in the presence of a single outlier, the standard deviation can grossly over-
estimate the variability of the data. The result is that confidence intervals are too wide
and hypothesis tests lack power. In some (or most) fields, it is uncommon for data to be
normally distributed and outliers are common.

One robust estimator of scale is the "average absolute deviation", or aad. As the name
implies, the mean of the absolute deviations about some estimate of location is used. This
method of estimation of scale has the advantage that the contribution of outliers is not
squared, as it is in the standard deviation, and therefore outliers contribute less to the
estimate. This method has the disadvantage that a single large outlier can completely
overwhelm the estimate of scale and give a misleading description of the spread of the data.

Another robust estimator of scale is the "median absolute deviation", or mad. As the name
implies, the estimate is calculated as the median of the absolute deviation from an estimate
of location. Often, the median of the data is used as the estimate of location, but it is not
necessary that this be so. Note that if the data are non-normal, the mean is unlikely to be
a good estimate of location.

It is necessary to scale both of these estimators in order for them to be comparable with the
standard deviation when the data are normally distributed. It is typical for the terms aad
and mad to be used to refer to the scaled version. The unscaled versions are rarely used.

External links

w:Variance11 w:Standard deviation12

11 http://en.wikipedia.org/wiki/Variance
12 http://en.wikipedia.org/wiki/Standard%20deviation
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5.4 Other summaries

5.4.1 Moving Average

A moving average is used when you want to get a general picture of the trends contained
in a data set. The data set of concern is typically a so-called "time series", i.e a set of
observations ordered in time. Given such a data set X, with individual data points xi, a
2n+1 point moving average is defined as x̄i = 1

2n+1
∑i+n
k=i−nxk, and is thus given by taking

the average of the 2n points around xi. Doing this on all data points in the set (except
the points too close to the edges) generates a new time series that is somewhat smoothed,
revealing only the general tendencies of the first time series.

The moving average for many time-based observations is often lagged. That is, we take
the 10 -day moving average by looking at the average of the last 10 days. We can make
this more exciting (who knew statistics was exciting?) by considering different weights on
the 10 days. Perhaps the most recent day should be the most important in our estimate
and the value from 10 days ago would be the least important. As long as we have a set of
weights that sums to 1, this is an acceptable moving-average. Sometimes the weights are
chosen along an exponential curve to make the exponential moving-average.
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6 Displaying Data

A single statistic tells only part of a dataset’s story. The mean is one perspective; the
median yet another. And when we explore relationships between multiple variables, even
more statistics arise. The coefficient estimates in a regression model, the Cochran-Maentel-
Haenszel test statistic in partial contingency tables; a multitude of statistics are available
to summarize and test data.

But our ultimate goal in statistics is not to summarize the data, it is to fully understand
their complex relationships. A well designed statistical graphic helps us explore, and
perhaps understand, these relationships.

This section will help you let the data speak, so that the world may know its story.

Statistics1 | >> Bar Charts2

6.1 External Links

• "The Visual Display of Quantitative Information"3 is the seminal work on
statistical graphics. It is a must read.

• http://search.barnesandnoble.com/booksearch/isbnInquiry.asp?z=y&isbn=0970601999&itm=14

"Show me the Numbers" by Stephen Few has a less technical approach to creating
graphics. You might want to scan through this book if you are building a library on
making graphs.

1 http://en.wikibooks.org/wiki/Statistics
2 Chapter 7 on page 39
3 http://www.edwardtufte.com/tufte/books_vdqi
4 http://search.barnesandnoble.com/booksearch/isbnInquiry.asp?z=y&isbn=0970601999&itm=1
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7 Bar Charts

The Bar Chart (or Bar Graph) is one of the most common ways of displaying catagor-
ical/qualitative data. Bar Graphs consist of 2 variables, one response (sometimes called
"dependent") and one predictor (sometimes called "independent"), arranged on the horizon-
tal and vertical axis of a graph. The relationship of the predictor and response variables is
shown by a mark of some sort (usually a rectangular box) from one variable’s value to the
other’s.

To demonstrate we will use the following data(tbl. 3.1.1) representing a hypothetical
relationship between a qualitative predictor variable, "Graph Type", and a quantitative
response variable, "Votes".

tbl. 3.1.1 - Favourite Graphs

Graph Type Votes
Bar Charts 10
Pie Graphs 2
Histograms 3
Pictograms 8
Comp. Pie Graphs 4
Line Graphs 9
Frequency Polygon 1
Scatter Graphs 5

From this data we can now construct an appropriate graphical representation which, in this
case will be a Bar Chart. The graph may be orientated in several ways, of which the vertical
chart (fig. 3.1.1) is most common, with the horizontal chart(fig. 3.1.2) also being used often

fig. 3.1.1 - vertical chart
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Figure 2: Vertical Bar Chart Example

fig. 3.1.2 - horizontal chart

Figure 3: Horizontal Bar Chart Example

40



External Links

Take note that the height and width of the bars, in the vertical and horizontal Charts,
respectfully, are equal to the response variable’s corresponding value - "Bar Chart" bar
equals the number of votes that the Bar Chart type received in tbl. 3.1.1

Also take note that there is a pronounced amount of space between the individual bars in
each of the graphs, this is important in that it help differentiate the Bar Chart graph type
from the Histogram graph type discussed in a later section.

7.1 External Links

• Interactive Java-based Bar-Chart Applet1

1 http://socr.ucla.edu/htmls/chart/BoxAndWhiskersChartDemo3_Chart.html
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8 Histograms

8.1 Histograms

Figure 4

It is often useful to look at the distribution of the data, or the frequency with which certain
values fall between pre-set bins of specified sizes. The selection of these bins is up to you,
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but remember that they should be selected in order to illuminate your data, not obfuscate
it.

To produce a histogram:

• Select a minimum, a maximum, and a bin size. All three of these are up to you.
In the Histogram data used above the minimum is 1, the maximum is 110, and the bin
size is 10.

• Calculate your bins and how many values fall into each of them. For the
Histogram data the bins are:
• 1 ≤ x < 10, 16 values.
• 10 ≤ x < 20, 4 values.
• 20 ≤ x < 30, 4 values.
• 30 ≤ x < 40, 2 values.
• 40 ≤ x < 50, 2 values.
• 50 ≤ x < 60, 1 values.
• 60 ≤ x < 70, 0 values.
• 70 ≤ x < 80, 0 values.
• 80 ≤ x < 90, 0 values.
• 90 ≤ x < 100, 0 value.
• 100 ≤ x < 110, 0 value.
• 110 ≤ x < 120, 1 value.

• Plot the counts you figured out above. Do this using a standard bar plot1.

There! You are done. Now let’s do an example.

8.1.1 Worked Problem

Let’s say you are an avid roleplayer who loves to play Mechwarrior, a d6 (6 sided die) based
game. You have just purchased a new 6 sided die and would like to see whether it is biased
(in combination with you when you roll it).

What We Expect

So before we look at what we get from rolling the die, let’s look at what we would expect.
First, if a die is unbiased it means that the odds of rolling a six are exactly the same as
the odds of rolling a 1--there wouldn’t be any favoritism towards certain values. Using the
standard equation for the arithmetic mean2 find that µ = 3.5. We would also expect the
histogram to be roughly even all of the way across--though it will almost never be perfect
simply because we are dealing with an element of random chance.

What We Get

Here are the numbers that you collect:

1 http://en.wikibooks.org/wiki/Statistics%3ADisplaying_Data%2FBar_Charts
2 http://en.wikibooks.org/wiki/Statistics%3ASummary%2FAverages%2Fmean%23mean
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1 5 6 4 1 3 5 5 6 4 1 5 6 6 4 5 1 4 3 6
1 3 6 4 2 4 1 6 4 2 2 4 3 4 1 1 6 3 5 5
4 3 5 3 4 2 2 5 6 5 4 3 5 3 3 1 5 4 4 5
1 2 5 1 6 5 4 3 2 4 2 1 3 3 3 4 6 1 1 3
6 6 1 4 6 6 6 5 3 1 5 6 3 4 5 5 5 2 4 4

Analysis

X̄ = 3.71

Referring back to what we would expect for an unbiased die, this is pretty close to what we
would expect. So let’s create a histogram to see if there is any significant difference in the
distribution.

The only logical way to divide up dice rolls into bins is by what’s showing on the die face:

1 2 3 4 5 6
16 9 17 21 20 17

If we are good at visualizing information, we can simple use a table, such as in the one above,
to see what might be happening. Often, however, it is useful to have a visual representation.
As the amount of variety of data we want to display increases, the need for graphs instead
of a simple table increases.
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Figure 5

Looking at the above figure, we clearly see that sides 1, 3, and 6 are almost exactly what we
would expect by chance. Sides 4 and 5 are slightly greater, but not too much so, and side
2 is a lot less. This could be the result of chance, or it could represent an actual anomaly
in the data and it is something to take note of keep in mind. We’ll address this issue again
in later chapters.

8.1.2 Frequency Density

Another way of drawing a histogram is to work out the Frequency Density.

Frequency Density
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The Frequency Density is the frequency divided by the class width.

The advantage of using frequency density in a histogram is that doesn’t matter if there isn’t
an obvious standard width to use. For all the groups, you would work out the frequency
divided by the class width for all of the groups.

8.2 External Links

• Interactive Java-based Bar-Chart Applet3

Statistics4

3 http://socr.ucla.edu/htmls/chart/HistogramChartDemo1_Chart.html
4 http://en.wikibooks.org/wiki/Statistics
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9 Scatter Plots

Figure 6

Scatter Plot is used to show the relationship between 2 numeric variables. It is not useful
when comparing discrete variables versus numeric variables. A scatter plot matrix is a
collection of pairwise scatter plots of numeric variables.
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9.1 External Links

• Interactive Java-based Bar-Chart Applet1

1 http://socr.ucla.edu/htmls/chart/ScatterChartDemo1_Chart.html
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10 Box Plots

Figure 7: Figure 1. Box plot of data from the Michelson-Morley Experiment

A box plot (also called a box and whisker diagram) is a simple visual representation of
key features of a univariate sample.
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The box lies on a vertical axis in the range of the sample. Typically, a top to the box
is placed at the 1st quartile, the bottom at the third quartile. The width of the box is
arbitrary, as there is no x-axis (though see Violin Plots, below).

In between the top and bottom of the box is some representation of central tendency. A
common version is to place a horizontal line at the median, dividing the box into two.
Additionally, a star or asterisk is placed at the mean value, centered in the box in the
horizontal direction.

Another common extension is to the ’box-and-whisker’ plot. This adds vertical lines extend-
ing from the top and bottom of the plot to for example, the maximum and minimum values,
The farthest value within 2 standard deviations above and below the mean. Alternatively,
the whiskers could extend to the 2.5 and 97.5 percentiles. Finally, it is common in the
box-and-whisker plot to show outliers1 (however defined) with asterisks at the individual
values beyond the ends of the whiskers.

Violin Plots are an extension to box plots using the horizontal information to present more
data. They show some estimate of the CDF2 instead of a box, though the quantiles of the
distribution are still shown.

1 http://en.wikibooks.org/wiki/outliers
2 http://en.wikibooks.org/wiki/CDF
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11 Pie Charts

Figure 8: A pie chart showing the racial make-up
of the US in 2000.
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Figure 9: Pie chart of populations of English language-speaking people

A Pie-Chart/Diagram is a graphical device - a circular shape broken into sub-divisions.
The sub-divisions are called "sectors", whose areas are proportional to the various parts
into which the whole quantity is divided. The sectors may be coloured differently to show
the relationship of parts to the whole. A pie diagram is an alternative of the sub-divided
bar diagram.

To construct a pie-chart, first we draw a circle of any suitable radius then the whole
quantity which is to be divided is equated to 360 degrees. The different parts of the circle
in terms of angles are calculated by the following formula.

Component Value / Whole Quantity * 360

The component parts i.e. sectors have been cut beginning from top in clockwise order.
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Note that the percentages in a list may not add up to exactly 100% due to rounding. For
example if a person spends a third of their time on each of three activities: 33%, 33% and
33% sums to 99%.

Warning: Pie charts are a very bad way of displaying information. The eye is good at
judging linear measures and bad at judging relative areas. A bar chart or dot chart is a
preferable way of displaying this type of data.

Cleveland (1985), page 264: "Data that can be shown by pie charts always can be shown
by a dot chart. This means that judgements of position along a common scale can be made
instead of the less accurate angle judgements." This statement is based on the empirical
investigations of Cleveland and McGill as well as investigations by perceptual psychologists.

11.1 External Links

• Interactive Java-based Pie-Chart Applet1

1 http://socr.ucla.edu/htmls/chart/PieChartDemo1_Chart.html
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12 Comparative Pie Charts

Figure 10: A pie chart showing preference of colors by two groups.

The comparative pie charts are very difficult to read and compare if the ratio of the pie
chart is not given.

Examine our example of color preference for two different groups. How much work does it
take to see that the Blue preference for both groups is the same? First, we have to find blue
on each pie, and then remember how many degrees it has. If we did not include the share
for blue in the label, then we would probably be approximating the comparison. So, if we
use multiple pie charts, we have to expect that comparisions between charts would only be
approximate.

What is the most popular color in the left graph? Red. But note, that you have to look
at all of the colors and read the label to see which it might be. Also, this author was kind
when creating these two graphs because I used the same color for the same object. Imagine
the confusion if one had made the most important color get Red in the right-hand chart?

If two shares of data should not be compared via the comparative pie chart, what kind
of graph would be preferred? The stacked bar chart is probably the most appropriate for
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sharing of the total comparisons. Again, exact comparisons cannot be done with graphs
and therefore a table may supplement the graph with detailed information.
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13 Pictograms

Figure 11

A pictogram is simply a picture that conveys some statistical information. A very common
example is the thermometer graph so common in fund drives. The entire thermometer is the
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goal (number of dollars that the fund raisers wish to collect. The red stripe (the "mercury")
represents the proportion of the goal that has already been collected.

Another example is a picture that represents the gender constitution of a group. Each small
picture of a male figure might represent 1,000 men and each small picture of a female figure
would, then, represent 1,000 women. A picture consisting of 3 male figures and 4 female
figures would indicate that the group is made up of 3,000 men and 4,000 women.

An interesting pictograph is the Chernoff Faces. It is useful for displaying information on
cases for which several variables have been recorded. In this kind of plot, each case is
represented by a separate picture of a face. The sizes of the various features of each face
are used to present the value of each variable. For instance, if blood pressure, high density
cholesterol, low density cholesterol, body temperature, height, and weight are recorded for
25 individuals, 25 faces would be displayed. The size of the nose on each face would represent
the level of that person’s blood pressure. The size of the left eye may represent the level
of low density cholesterol while the size of the right eye might represent the level of high
density cholesterol. The length of the mouth could represent the person’s temperature.
The length of the left ear might indicate the person’s height and that of the right ear
might represent their weight. Of course, a legend would be provided to help the viewer
determine what feature relates to which variable. Where it would be difficult to represent
the relationship of all 6 variables on a single (6-dimensional) graph, the Chernoff Faces
would give a relatively easy to interpret 6-dimensional representation.
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14 Line Graphs

Basically, a line graph can be, for example, a picture of what happened by/to something
(a variable) during a specific time period (also a variable).

On the left side of such a graph usually is as an indication of that "something" in the form
of a scale, and at the bottom is an indication of the specific time involved.

Usually a line graph is plotted after a table has been provided showing the relationship
between the two variables in the form of pairs. Just as in (x,y) graphs, each of the pairs
results in a specific point on the graph, and being a LINE graph these points are connected
to one another by a LINE.

Many other line graphs exist; they all CONNECT the points by LINEs, not necessarily
straight lines. Sometimes polynomials, for example, are used to describe approximately
the basic relationship between the given pairs of variables, and between these points. The
higher the degree of the polynomial, the more accurate is the "picture" of that relationship,
but the degree of that polynomial must never be higher than n-1, where n is the number
of the given points.

14.1 See also

Graph theory1

Curve fitting2

From Wikipedia: Line graph3 and Curve fitting4

14.2 External Links

• Interactive Java-based Line Graph Applet5

1 http://en.wikibooks.org/wiki/Discrete%20Mathematics%2FGraph%20theory
2 http://en.wikibooks.org/wiki/..%2F..%2FCurve%20fitting
3 http://en.wikipedia.org/wiki/Line%20graph
4 http://en.wikipedia.org/wiki/Curve%20fitting
5 http://socr.ucla.edu/htmls/chart/LineChartDemo1_Chart.html
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15 Frequency Polygon

Figure 12: This is a histogram with an overlaid frequency polygon.

Midpoints of the interval of corresponding rectangle in a histogram are joined together by
straight lines. It gives a polygon i.e. a figure with many angles. it is used when two or
more sets of data are to be illustrated on the same diagram such as death rates in smokers
and non smokers, birth and death rates of a population etc

One way to form a frequency polygon is to connect the midpoints at the top of the bars of
a histogram with line segments (or a smooth curve). Of course the midpoints themselves
could easily be plotted without the histogram and be joined by line segments. Sometimes
it is beneficial to show the histogram and frequency polygon together.

Unlike histograms, frequency polygons can be superimposed so as to compare several fre-
quency distributions.
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16 Introduction to Probability

Figure 13: When throwing two dice, what is the
probability that their sum equals seven?

16.1 Introduction to probability

Please note that this page is just a stub, more will be added later.

16.1.1 Why have probability in a statistics textbook?

Very little in mathematics is truly self contained. Many branches of mathematics touch
and interact with one another, and the fields of probability and statistics are no different.
A basic understanding of probability is vital in grasping basic statistics, and probability is
largely abstract without statistics to determine the "real world" probabilities.

This section is not meant to give a comprehensive lecture in probability, but rather simply
touch on the basics that are needed for this class, covering the basics of Bayesian Analysis
for those students who are looking for something a little more interesting. This knowl-
edge will be invaluable in attempting to understand the mathematics involved in various
Distributions1 that come later.

16.1.2 Set notion

A set is a collection of objects. We usually use capital letters to denote sets, for e.g., A is
the set of females in this room.

1 http://en.wikibooks.org/wiki/Statistics%3ADistributions
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• The members of a set A are called the elements of A. For e.g., Patricia is an element of
A (Patricia ∈ A) Patrick is not an element of A (Patrick /∈ A).

• The universal set, U, is the set of all objects under consideration. For e.g., U is the set
of all people in this room.

• The null set or empty set, ∅, has no elements. For e.g., the set of males above 2.8m tall
in this room is an empty set.

• The complement Ac of a set A is the set of elements in U outside A. I.e. x ∈ Ac iff x /∈
A.

• Let A and B be 2 sets. A is a subset of B if each element of A is also an element of B.
Write A ⊂ B. For e.g., The set of females wearing metal frame glasses in this room ⊂ the
set of females wearing glasses in this room ⊂ the set of females in this room.

• The intersection A ∩ B of two sets A and B is the set of the common elements. I.e. x ∈
A ∩ B iff x ∈ A and x ∈ B.

• The union A ∪ B of two sets A and B is the set of all elements from A or B. I.e. x ∈ A
∪ B iff x ∈ A or x ∈ B.

16.1.3 Venn diagrams and notation

A Venn diagram visually models defined events. Each event is expressed with a circle.
Events that have outcomes in common will overlap with what is known as the intersection
of the events.
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Figure 14: A Venn diagram.

16.2 Probability

Probability is connected with some unpredictability. We know what outcomes may occur,
but not exactly which one. The set of possible outcomes plays a basic role. We call it the
sample space and indicate it by S. Elements of S are called outcomes. In rolling a dice the
sample space is S = {1,2,3,4,5,6}. Not only do we speak of the outcomes, but also about
events, sets of outcomes. E.g. in rolling a dice we can ask whether the outcome was an even
number, which means asking after the event "even" = E = {2,4,6}. In simple situations
with a finite number of outcomes, we assign to each outcome s (∈ S) its probability (of
occurrence) p(s) (written with a small p), a number between 0 and 1. It is a quite simple
function, called the probability function, with the only further property that the total of
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all the probabilities sum up to 1. Also for events A do we speak of their probability P(A)
(written with a capital P), which is simply the total of the probabilities of the outcomes in
A. For a fair dice p(s) = 1/6 for each outcome s and P("even") = P(E) = 1/6+1/6+1/6 =
1/2.

The general concept of probability for non-finite sample spaces is a little more complex,
although it rests on the same ideas.

16.2.1 Negation

Negation is a way of saying "not A", hence saying that the complement of A has occurred.
Note: The complement of an event A can be expressed as A’ or Ac

For example: "What is the probability that a six-sided die will not land on a one?" (five
out of six, or p = 0.833)

P [X ′] = 1−P [X]

Figure 15: Complement of an Event
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Or, more colloquially, "the probability of ’not X’ together with the probability of ’X’ equals
one or 100%."

16.2.2 Calculating Probability

Relative frequency describes the number of successes over the total number of outcomes.
For example if a coin is flipped and out of 50 flips 29 are heads then the relative frequency
is 29

50

The Union of two events is when you want to know Event A OR Event B.<Br>

This is different than "And." "And" is the intersection, "OR" is the union of the events (both
events put together).

Figure 16

In the above example of events you will notice that...<Br>

Event A is a STAR and a DIAMOND.

Event B is a TRIANGLE and a PENTAGON and a STAR

(A ∩ B) = (A and B) = A intersect B is only the STAR
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But (A ∪ B) = (A or B) = A Union B is EVERYTHING. The TRIANGLE, PENTAGON,
STAR, and DIAMOND

Notice that both event A and Event B have the STAR in common. However, when you list
the Union of the events you only list the STAR one time!

Event A = STAR, DIAMOND EVENT B = TRIANGLE, PENTAGON, STAR

When you combine them together you get (STAR + DIAMOND) + (TRIANGLE +
PENTAGON + STAR) BUT WAIT!!! STAR is listed two times, so one will need to
SUBTRACT the extra STAR from the list.

You should notice that it is the INTERSECTION that is listed TWICE, so you have to
subtract the duplicate intersection.

Formula for the Union of Events: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

Example: Let P(A) = 0.3 and P(B) = 0.2 and P(A ∩ B) = 0.15. Find P(A ∪ B).

P(A ∪ B) = (0.3) + (0.2) - (0.15) = 0.35

Example: Let P(A) = 0.3 and P(B) = 0.2 and P(A ∩ B) = . Find P(A ∪ B).

Note: Since the intersection of the events is the null set, then you know the events are
DISJOINT or MUTUALLY EXCLUSIVE.

P(A ∪ B) = (0.3) + (0.2) - (0) = 0.5

16.2.3 Conjunction

16.2.4 Disjunction

16.2.5 Law of total probability

Generalized case

16.2.6 Conclusion: putting it all together

16.2.7 Examples
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17 Bernoulli Trials

A lot of experiments just have two possible outcomes, generally referred to as "success"
and "failure". If such an experiment is independently repeated we call them (a series of)
Bernoulli trials. Usually the probability of success is called p. The repetition may be
done in several ways:

• a fixed number of times (n); as a consequence the observed number of successes is
stochastic;

• until a fixed number of successes (m) is observed; as a consequence the number of ex-
periments is stochastic;

In the first case the number of successes is Binomial distributed with parameters n and p.
For n=1 the distribution is also called the Bernoulli distribution. In the second case the
number of experiments is Negative Binomial distributed with parameters m and p. For
m=1 the distribution is also called the Geometric distribution.
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18 Introductory Bayesian Analysis

Bayesian analysis is the branch of statistics based on the idea that we have some knowledge
in advance about the probabilities that we are interested in, so called a priori probabilities.
This might be your degree of belief in a particular event, the results from previous studies,
or a general agreed-upon starting value for a probability. The terminology "Bayesian"
comes from the Bayesian rule or law, a law about conditional probabilities. The opposite
of "Bayesian" is sometimes referred to as "Classical Statistics."

18.0.8 Example

Consider a box with 3 coins, with probabilities of showing heads respectively 1/4, 1/2 and
3/4. We choose arbitrarily one of the coins. Hence we take 1/3 as the a priori probability
P (C1) of having chosen coin number 1. After 5 throws, in which X=4 times heads came up,
it seems less likely that the coin is coin number 1. We calculate the a posteriori probability
that the coin is coin number 1, as:

P (C1|X = 4) = P (X = 4|C1)P (C1)
P (X = 4) = P (X = 4|C1)P (C1)

P (X = 4|C1) +P (X = 4|C2) +P (X = 4|C3) =
(5
4
)
(1

4)4 3
4

1
3(5

4
)
(1

4)4 3
4

1
3 +

(5
4
)
(1

2)4 1
2

1
3 +

(5
4
)
(3

4)4 1
4

1
3

=

In words:

The probability that the Coin is the first Coin, given that we know heads came up 4
times... Is equal to the probability that heads came up 4 times given we know it’s the first
coin, times the probability that the coin is the first coin. All divided by the probability
that heads comes up 4 times (ignoring which of the three Coins is chosen). The binomial
coefficients cancel out as well as all denominators when expanding 1/2 to 2/4. This results
in

3
3 + 32 + 81 = 3

116

In the same way we find:
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P (C2|X = 4) = 32
3 + 32 + 81 = 32

116

and

P (C3|X = 4) = 81
3 + 32 + 81 = 81

116
.

This shows us that after examining the outcome of the five throws, it is most likely we did
choose coin number 3.

Actually for a given result the denominator does not matter, only the relative Probabilities
p(Ci) = P (Ci|X = 4)/P (X = 4) When the result is 3 times heads the Probabilities change
in favor of Coin 2 and further as the following table shows:

Heads p(C1) p(C2) p(C3)
5 1 32 243
4 3 32 81
3 9 32 27
2 27 32 9
1 81 32 3
0 243 32 1
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19 Distributions

How are the results of the latest SAT test? What is the average height of females under
21 in Zambia? How does beer consumption among college students at engineering college
compare to college students in liberal arts colleges?

To answer these questions, we would collect data and put them in a form that is easy to
summarize, visualize, and discuss. Loosely speaking, the collection and aggregation of data
result in a distribution. Distributions are most often in the form of a histogram or a table.
That way, we can "see" the data immediately and begin our scientific inquiry.

For example, if we want to know more about students’ latest performance on the SAT, we
would collect SAT scores from ETS, compile them in a way that is pertinent to us, and
then form a distribution of these scores. The result may be a data table or it may be a plot.
Regardless, once we "see" the data, we can begin asking more interesting research questions
about our data.

The distributions we create often parallel distributions that are mathematically generated.
For example, if we obtain the heights of all high school students and plot this data, the graph
may resemble a normal distribution, which is generated mathematically. Then, instead of
painstakingly collecting heights of all high school students, we could simply use a normal
distribution to approximate the heights without sacrificing too much accuracy.

In the study of statistics, we focus on mathematical distributions for the sake of simplicity
and relevance to the real-world. Understanding these distributions will enable us to visualize
the data easier and build models quicker. However, they cannot and do not replace the work
of manual data collection and generating the actual data distribution.

What percentage lie within a certain range? Distributions show what percentage of the data
lies within a certain range. So, given a distribution, and a set of values, we can determine
the probability that the data will lie within a certain range.

The same data may lead to different conclusions if it is interposed on different distributions.
So, it is vital in all statistical analysis for data to be put onto the correct distribution.

19.0.9 Distributions

1. Discrete Distributions1

a) Uniform Distribution2

b) Bernoulli Distribution3

1 Chapter 20 on page 77
2 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FDiscrete%20Uniform
3 Chapter 21 on page 79

75

http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FDiscrete%20Uniform


Distributions

c) Binomial Distribution4

d) Poisson Distribution5

e) Geometric Distribution6

f) Negative Binomial Distribution7

g) Hypergeometric Distribution8

2. Continuous Distributions9

a) Uniform Distribution10

b) Exponential Distribution11

c) Gamma Distribution12

d) Normal Distribution13

e) Chi-Square Distribution14

f) Student-t Distribution15

g) F Distribution16

h) Beta Distribution17

i) Weibull Distribution18

j) Gumbel Distribution19

4 Chapter 22 on page 81
5 Chapter 23 on page 87
6 Chapter 24 on page 91
7 Chapter 25 on page 95
8 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FHypergeometric
9 Chapter 26 on page 99
10 Chapter 27 on page 101
11 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FExponential
12 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FGamma
13 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FNormal%20%28Gaussian%29
14 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FChi-square
15 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FStudent-t
16 Chapter 29 on page 105
17 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FBeta
18 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FWeibull
19 http://en.wikibooks.org/wiki/Statistics%2FDistributions%2FGumbel
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20 Discrete Distributions

’Discrete’ data are data that assume certain discrete and quantized values. For example,
true-false answers are discrete, because there are only two possible choices. Valve settings
such as ’high/medium/low’ can be considered as discrete values. As a general rule, if data
can be counted in a practical manner, then they can be considered to be discrete.

To demonstrate this, let us consider the population of the world. It is a discrete number
because the number of civilians is theoretically countable. But since this is not practicable,
statisticians often treat this data as continuous. That is, we think of population as within
a range of numbers rather than a single point.

For the curious, the world population is 6,533,596,139 as of August 9, 2006. Please note
that statisticians did not arrive at this figure by counting individual residents. They used
much smaller samples of the population to estimate the whole. Going back to Chapter 1,
this is a great reason to learn statistics - we need only a smaller sample of data to make
intelligent descriptions of the entire population!

Discrete distributions result from plotting the frequency distribution of data which is dis-
crete in nature.

20.1 Cumulative Distribution Function

A discrete random variable has a cumulative distribution function that describes the prob-
ability that the random variable is below the point. The cumulative distribution must
increase towards 1. Depending on the random variable, it may reach one at a finite num-
ber, or it may not. The cdf is represented by a capital F.

20.2 Probability Mass Function

A discrete random variable has a probability mass function that describes how likely the
random variable is to be at a certain point. The probability mass function must have a
total of 1, and sums to the cdf. The pmf is represented by the lowercase f.

20.3 Special Values

The expected value of a discrete variable is
∑nmax
nmin

xif(xi)

The expected value of any function of a discrete variable g(X) is
∑nmax
nmin

g(xi)f(xi)
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The variance is equal to E((X−E(X))2)

20.4 External Links

Simulating binomial, hypergeometric, and the Poisson distribution: Discrete Distribu-
tions1

1 http://www.vias.org/simulations/simusoft_discretedistris.html
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21 Bernoulli Distribution

21.1 Bernoulli Distribution: The coin toss

There is no more basic random event than the flipping of a coin. Heads or tails. It’s as
simple as you can get! The "Bernoulli Trial1" refers to a single event which can have
one of two possible outcomes with a fixed probability of each occurring. You can describe
these events as "yes or no" questions. For example:

• Will the coin land heads?
• Will the newborn child be a girl?
• Are a random person’s eyes green?
• Will a mosquito die after the area was sprayed with insecticide?
• Will a potential customer decide to buy my product?
• Will a citizen vote for a specific candidate?
• Is an employee going to vote pro-union?
• Will this person be abducted by aliens in their lifetime?

The Bernoulli Distribution has one controlling parameter: the probability of success. A "fair
coin" or an experiment where success and failure are equally likely will have a probability
of 0.5 (50%). Typically the variable p is used to represent this parameter.

If a random variable X is distributed with a Bernoulli Distribution with a parameter p we
write its probability mass function2 as:

f(x) =
{
p, if x= 1
1−p, if x= 0

0≤ p≤ 1

Where the event X=1 represents the "yes."

This distribution may seem trivial, but it is still a very important building block in proba-
bility. The Binomial distribution extends the Bernoulli distribution to encompass multiple
"yes" or "no" cases with a fixed probability. Take a close look at the examples cited above.
Some similar questions will be presented in the next section which might give an under-
standing of how these distributions are related.

1 http://en.wikipedia.org/wiki/Bernoulli%20Trial
2 http://en.wikipedia.org/wiki/probability%20mass%20function
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Bernoulli Distribution

21.1.1 Mean

The mean (E[X]) can be derived:

E[X] =
∑
i

f(xi) ·xi

E[X] = p ·1 + (1−p) ·0

E[X] = p

21.1.2 Variance

Var(X) = E[(X−E[X])2] =
∑
i

f(xi) · (xi−E[X])2

Var(X) = p · (1−p)2 + (1−p) · (0−p)2

Var(X) = [p(1−p) +p2](1−p)

Var(X) = p(1−p)

21.2 External links

• Interactive Bernoulli Distribution Web Applet (Java)3

3 http://socr.ucla.edu/htmls/dist/Bernoulli_Distribution.html
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22 Binomial Distribution

22.1 Binomial Distribution

Where the Bernoulli Distribution1 asks the question of "Will this single event succeed?"
the Binomial is associated with the question "Out of a given number of trials, how many
will succeed?" Some example questions that are modeled with a Binomial distribution are:

• Out of ten tosses, how many times will this coin land heads?
• From the children born in a given hospital on a given day, how many of them will be

girls?
• How many students in a given classroom will have green eyes?
• How many mosquitos, out of a swarm, will die when sprayed with insecticide?

The relation between the Bernoulli and Binomial distributions is intuitive: The Binomial
distribution is composed of multiple Bernoulli trials. We conduct n repeated experiments
where the probability of success is given by the parameter p and add up the number of
successes. This number of successes is represented by the random variable X. The value of
X is then between 0 and n.

When a random variable X has a Binomial Distribution with parameters p and n we write
it as X ˜ Bin(n,p) or X ˜ B(n,p) and the probability mass function is given by the equation:

P [X = k] =
{(n

k

)
pk (1−p)n−k 0≤ k ≤ n

0 otherwise
0≤ p≤ 1, n ∈ N

where
(n
k

)
= n!

k!(n−k)!

For a refresher on factorials (n!), go back to the Refresher Course2 earlier in this wiki
book.

22.1.1 An example

Let’s walk through a simple example of the Binomial distribution. We’re going to use some
pretty small numbers because factorials can be hard to compute. (Few basic calculators
even feature them!) We are going to ask five random people if they believe there is life on
other planets. We are going to assume in this example that we know 30% of people believe

1 Chapter 21 on page 79
2 Chapter 1.4.2 on page 9
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this to be true. We want to ask the question: "How many people will say they believe
in extraterrestrial life?" Actually, we want to be more specific than that: "What is the
probability that exactly 2 people will say they believe in extraterrestrial life?"

We know all the values that we need to plug into the equation. The number of people asked,
n=5. The probability of any given person answering "yes", p=0.3. (Remember, I said that
30% of people believe in life on other planets!) Finally, we’re asking for the probability that
exactly 2 people answer "yes" so k=2. This yields the equation:

P [X = 2] =
(

5
2

)
·0.32·(1−0.3)3 = 10 ·0.32 · (1−0.3)3 = 0.3087

since (
5
2

)
= 5!

2! ·3! = 5 ·4 ·3 ·2 ·1
(2 ·1) · (3 ·2 ·1) = 120

12 = 10

Here are the probabilities for all the possible values of X. You can get these values by
replacing the k=2 in the above equation with all values from 0 to 5.

Value for k Probability f(k)
0 0.16807
1 0.36015
2 0.30870
3 0.13230
4 0.02835
5 0.00243

What can we learn from these results? Well, first of all we’ll see that it’s just a little more
likely that only one person will confess to believing in life on other planets. There’s a
distinct chance (about 17%) that nobody will believe it, and there’s only a 0.24% (a little
over 2 in 1000) that all five people will be believers.

22.1.2 Explanation of the equation

Take the above example. Let’s consider each of the five people one by one.

The probability that any one person believes in extraterrestrial life is 30%, or 0.3. So the
probability that any two people both believe in extraterrestrial life is 0.3 squared. Similarly,
the probability that any one person does not believe in extraterrestrial life is 70%, or 0.7,
so the probability that any three people do not believe in extraterrestrial life is 0.7 cubed.

Now, for two out of five people to believe in extraterrestrial life, two conditions must be
satisfied: two people believe in extraterrestrial life, and three do not. The probability of
two out of five people believing in extraterrestrial life would thus appear to be 0.3 squared
(two believers) times 0.7 cubed (three non-believers), or 0.03087.
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However, in doing this, we are only considering the case whereby the first two selected
people are believers. How do we consider cases such as that in which the third and fifth
people are believers, which would also mean a total of two believers out of five?

The answer lies in combinatorics. Bearing in mind that the probability that the first two
out of five people believe in extraterrestrial life is 0.03087, we note that there are C(5,2),
or 10, ways of selecting a set of two people from out of a set of five, i.e. there are ten ways
of considering two people out of the five to be the "first two". This is why we multiply
by C(n,k). The probability of having any two of the five people be believers is ten times
0.03087, or 0.3087.

22.1.3 Mean

The mean can be derived as follow.

E[X] =
∑
i

f(xi) ·xi =
n∑
x=0

(
n

x

)
px (1−p)n−x ·x

E[X] =
n∑
x=0

n!
x!(n−x)!p

x (1−p)n−xx

E[X] = n!
0!(n−0)!p

0 (1−p)n−0 ·0 +
n∑
x=1

n!
x!(n−x)!p

x (1−p)n−xx

E[X] = 0 +
n∑
x=1

n(n−1)!
x(x−1)!(n−x)!p ·p

x−1 (1−p)n−xx

E[X] = np
n∑
x=1

(n−1)!
(x−1)!(n−x)!p

x−1 (1−p)n−x

Now let w=x-1 and m=n-1. We see that m-w=n-x. We can now rewrite the summation as

E[X] = np

[
m∑
w=0

m!
w!(m−w)!p

w (1−p)m−w
]

We now see that the summation is the sum over the complete pmf of a binomial random
variable distributed Bin(m, p). This is equal to 1 (and can be easily verified using the
Binomial theorem3). Therefore, we have

3 http://en.wikipedia.org/wiki/Binomial%20theorem
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E[X] = np [1] = np

22.1.4 Variance

We derive the variance using the following formula:

Var[X] = E[X2]− (E[X])2.

We have already calculated E[X] above, so now we will calculate E[X2] and then return to
this variance formula:

E[X2] =
∑
i

f(xi) ·x2 =
n∑
x=0

x2 ·
(
n

x

)
px(1−p)n−x.

We can use our experience gained above in deriving the mean. We use the same definitions
of m and w.

E[X2] =
n∑
x=0

n!
x!(n−x)!p

x (1−p)n−xx2

E[X2] = 0 +
n∑
x=1

n!
x!(n−x)!p

x (1−p)n−xx2

E[X2] = np
n∑
x=1

(n−1)!
(x−1)!(n−x)!p

x−1 (1−p)n−xx

E[X2] = np
m∑
w=0

(
m

w

)
pw (1−p)m−w (w+ 1)

E[X2] = np

[
m∑
w=0

(
m

w

)
pw (1−p)m−ww+

m∑
w=0

(
m

w

)
pw (1−p)m−w

]

The first sum is identical in form to the one we calculated in the Mean (above). It sums to
mp. The second sum is 1.
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E[X2] = np · (mp+ 1) = np((n−1)p+ 1) = np(np−p+ 1).

Using this result in the expression for the variance, along with the Mean (E(X) = np), we
get

Var(X) = E[X2]− (E[X])2 = np(np−p+ 1)− (np)2 = np(1−p).

22.2 External links

• Interactive Binomial Distribution Web Applet (Java)4

4 http://socr.ucla.edu/htmls/dist/Binomial_Distribution.html
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23 Poisson Distribution

23.1 Poisson Distribution

Any French speaker will notice that "Poisson" means "fish", but really there’s nothing fishy
about this distribution. It’s actually pretty straightforward. The name comes from the
mathematician Siméon-Denis Poisson1 (1781-1840).

The Poisson Distribution is very similar to the Binomial Distribution2. We are examin-
ing the number of times an event happens. The difference is subtle. Whereas the Binomial
Distribution looks at how many times we register a success over a fixed total number of
trials, the Poisson Distribution measures how many times a discrete event occurs, over a
period of continuous space or time. There isn’t a "total" value n. As with the previous
sections, let’s examine a couple of experiments or questions that might have an underlying
Poisson nature.

• How many pennies will I encounter on my walk home?
• How many children will be delivered at the hospital today?
• How many mosquito bites did you get today after having sprayed with insecticide?
• How many angry phone calls did I get after airing a particularly distasteful political ad?
• How many products will I sell after airing a new television commercial?
• How many people, per hour, will cross a picket line into my store?
• How many alien abduction reports will be filed this year?
• How many defects will there be per 100 metres of rope sold?

What’s a little different about this distribution is that the random variable X which counts
the number of events can take on any non-negative integer value. In other words, I could
walk home and find no pennies on the street. I could also find one penny. It’s also possible
(although unlikely, short of an armored-car exploding nearby) that I would find 10 or 100
or 10,000 pennies.

Instead of having a parameter p that represents a component probability like in the Bernoulli
and Binomial distributions, this time we have the parameter "lambda" or λ which repre-
sents the "average or expected" number of events to happen within our experiment. The
probability mass function of the Poisson is given by

P (N = k) = e−λλk

k!
.

1 http://en.wikipedia.org/wiki/Simeon_Poisson
2 Chapter 22 on page 81
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23.1.1 An example

We run a restaurant and our signature dish (which is very expensive) gets ordered on
average 4 times per day. What is the probability of having this dish ordered exactly 3
times tomorrow? If we only have the ingredients to prepare 3 of these dishes, what is the
probability that it will get sold out and we’ll have to turn some orders away?

The probability of having the dish ordered 3 times exactly is given if we set k=3 in the
above equation. Remember that we’ve already determined that we sell on average 4 dishes
per day, so λ=4.

P (N = k) = e−λλk

k! = e−443

3! = 0.195

Here’s a table of the probabilities for all values from k=0..6:

Value for k Probability f(k)
0 0.0183
1 0.0733
2 0.1465
3 0.1954
4 0.1954
5 0.1563
6 0.1042

Now for the big question: Will we run out of food by the end of the day tomorrow? In
other words, we’re asking if the random variable X>3. In order to compute this we would
have to add the probabilities that X=4, X=5, X=6,... all the way to infinity! But wait,
there’s a better way!

The probability that we run out of food P(X>3) is the same as 1 minus the probability
that we don’t run out of food, or 1-P(X≤3). So if we total the probability that we sell zero,
one, two and three dishes and subtract that from 1, we’ll have our answer. So,

1 - P(X≤3) = 1 - ( P(X=0) + P(X=1) + P(X=2) + P(X=3) ) = 1 - 0.4335 = 0.5665

In other words, we have a 56.65% chance of selling out of our wonderful signature dish. I
guess crossing our fingers is in order!

de:Mathematik: Statistik: Poissonverteilung3

23.1.2 Mean

We calculate the mean as follows:

3 http://de.wikibooks.org/wiki/Mathematik%3A%20Statistik%3A%20Poissonverteilung
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E[X] =
∑
i

f(xi) ·xi =
∑
x=0

e−λλx

x! x

E[X] = e−λλ0

0! ·0 +
∑
x=1

e−λλx

x! x

E[X] = 0 +e−λ
∑
x=1

λλx−1

(x−1)!

E[X] = λe−λ
∑
x=1

λx−1

(x−1)!

E[X] = λe−λ
∑
x=0

λx

x!

Remember4 that eλ =
∑
x=0

λx

x!

E[X] = λe−λeλ = λ

23.1.3 Variance

We derive the variance using the following formula:

Var[X] = E[X2]− (E[X])2

We have already calculated E[X] above, so now we will calculate E[X2] and then return to
this variance formula:

E[X2] =
∑
i

f(xi) ·x2

E[X2] =
∑
x=0

e−λλx

x! x2

4 http://en.wikipedia.org/wiki/Taylor_series%23List_of_Maclaurin_series_of_some_common_
functions
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E[X2] = 0 +
∑
x=1

e−λλλx−1

(x−1)! x

E[X2] = λ
∑
x=0

e−λλx

x! (x+ 1)

E[X2] = λ

[∑
x=0

e−λλx

x! x+
∑
x=0

e−λλx

x!

]

The first sum is E[X]=λ and the second we also calculated above to be 1.

E[X2] = λ [λ+ 1] = λ2 +λ

Returning to the variance formula we find that

Var[X] = (λ2 +λ)− (λ)2 = λ

23.2 External links

• Interactive Poisson Distribution Web Applet (Java)5

5 http://socr.ucla.edu/htmls/dist/Poisson_Distribution.html

90

http://socr.ucla.edu/htmls/dist/Poisson_Distribution.html


24 Geometric Distribution

24.1 Geometric distribution

There are two similar distributions with the name "Geometric Distribution".

• The probability distribution of the number X of Bernoulli trial1s needed to get one
success, supported on the set { 1, 2, 3, ...}

• The probability distribution of the number Y = X − 1 of failures before the first success,
supported on the set { 0, 1, 2, 3, ... }

These two different geometric distributions should not be confused with each other. Often,
the name shifted geometric distribution is adopted for the former one. We will use X and
Y to refer to distinguish the two.

24.1.1 Shifted

The shifted Geometric Distribution refers to the probability of the number of times needed
to do something until getting a desired result. For example:

• How many times will I throw a coin until it lands on heads?
• How many children will I have until I get a girl?
• How many cards will I draw from a pack until I get a Joker?

Just like the Bernoulli Distribution2, the Geometric distribution has one controlling
parameter: The probability of success in any independent test.

If a random variable X is distributed with a Geometric Distribution with a parameter p we
write its probability mass function3 as:

P (X = i) = p(1−p)i−1

With a Geometric Distribution it is also pretty easy to calculate the probability of a "more
than n times" case. The probability of failing to achieve the wanted result is (1−p)k.

Example: a student comes home from a party in the forest, in which interesting sub-
stances4 were consumed. The student is trying to find the key to his front door, out of a
keychain with 10 different keys. What is the probability of the student succeeding in finding
the right key in the 4th attempt?

1 http://en.wikibooks.org/wiki/Bernoulli%20trial
2 http://en.wikibooks.org/wiki/Statistics%3ADistributions%2FBernoulli
3 http://en.wikipedia.org/wiki/probability%20mass%20function
4 http://en.wikipedia.org/wiki/Cannabis
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P (X = 4) = 1
10

(
1− 1

10

)4−1
= 1

10

(
9
10

)3
= 0.0729

24.1.2 Unshifted

The probability mass function is defined as:

f(x) = p(1−p)x

for
x ∈ {0,1,2,}

Mean

E[X] =
∑
i

f(xi)xi =
∑

0
p(1−p)xx

Let q=1-p

E[X] =
∑

0
(1− q)qxx

E[X] =
∑

0
(1− q)qqx−1x

E[X] = (1− q)q
∑

0
qx−1x

E[X] = (1− q)q
∑

0

d

dq
qx

We can now interchange the derivative and the sum.

E[X] = (1− q)q d
dq

∑
0
qx

E[X] = (1− q)q d
dq

1
1− q
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E[X] = (1− q)q 1
(1− q)2

E[X] = q
1

(1− q)

E[X] = (1−p)
p

Variance

We derive the variance using the following formula:

Var[X] = E[X2]− (E[X])2

We have already calculated E[X] above, so now we will calculate E[X2] and then return to
this variance formula:

E[X2] =
∑
i

f(xi) ·x2

E[X2] =
∑

0
p(1−p)xx2

Let q=1-p

E[X2] =
∑

0
(1− q)qxx2

We now manipulate x2 so that we get forms that are easy to handle by the technique used
when deriving the mean.

E[X2] = (1− q)
∑

0
qx[(x2−x) +x]

E[X2] = (1− q)
[∑

0
qx(x2−x) +

∑
0
qxx

]

93



Geometric Distribution

E[X2] = (1− q)
[
q2∑

0
qx−2x(x−1) + q

∑
0
qx−1x

]

E[X2] = (1− q)q
[
q
∑

0

d2

(dq)2 q
x+

∑
0

d

dq
qx
]

E[X2] = (1− q)q
[
q
d2

(dq)2

∑
0
qx+ d

dq

∑
0
qx
]

E[X2] = (1− q)q
[
q
d2

(dq)2
1

1− q + d

dq

1
1− q

]

E[X2] = (1− q)q
[
q

2
(1− q)3 + 1

(1− q)2

]

E[X2] = 2q2

(1− q)2 + q

(1− q)

E[X2] = 2q2 + q(1− q)
(1− q)2

E[X2] = q(q+ 1)
(1− q)2

E[X2] = (1−p)(2−p)
p2

We then return to the variance formula

Var[X] =
[(1−p)(2−p)

p2

]
−
(1−p

p

)2

Var[X] = (1−p)
p2

24.2 External links

• Interactive Geometric Distribution Web Applet (Java)5

5 http://socr.ucla.edu/htmls/dist/Geoemtric_Distribution.html
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25 Negative Binomial Distribution

25.1 Negative Binomial Distribution

Just as the Bernoulli and the Binomial distribution are related in counting the number of
successes in 1 or more trials, the Geometric and the Negative Binomial distribution are
related in the number of trials needed to get 1 or more successes.

The Negative Binomial distribution refers to the probability of the number of times needed
to do something until achieving a fixed number of desired results. For example:

• How many times will I throw a coin until it lands on heads for the 10th time?
• How many children will I have when I get my third daughter?
• How many cards will I have to draw from a pack until I get the second Joker?

Just like the Binomial Distribution1, the Negative Binomial distribution has two con-
trolling parameters: the probability of success p in any independent test and the desired
number of successes m. If a random variable X has Negative Binomial distribution with
parameters p and m, its probability mass function2 is:

P (X = n) =
(
n−1
m−1

)
pm(1−p)n−m, for n≥m

.

25.1.1 Example

A travelling salesman goes home if he has sold 3 encyclopedias that day. Some days he
sells them quickly. Other days he’s out till late in the evening. If on the average he sells an
encyclopedia at one out of ten houses he approaches, what is the probability of returning
home after having visited only 10 houses?

Answer:

The number of trials X is Negative Binomial distributed with parameters p=0.1 and m=3,
hence:

1 http://en.wikibooks.org/wiki/Statistics%3ADistributions%2FBinomial
2 http://en.wikipedia.org/wiki/probability%20mass%20function
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P (X = 10) =
(

9
2

)
0.130.97 = 0.0172186884

.

25.1.2 Mean

The mean can be derived as follows.

E[X] =
∑
i

f(xi) ·xi =
(x+r−1

r−1 )∑
x=0

px(1−p)r ·x

E[X] =
(

0 + r−1
r−1

)
p0 (1−p)r ·0 +

(x+r−1
r−1 )∑
x=1

px(1−p)r ·x

E[X] = 0 +

(x+r−1)!
(r−1)!x!∑
x=1

px(1−p)r ·x

E[X] = rp

1−p

(x+r−1)!
r!(x−1)!∑
x=1

px−1(1−p)r+1

Now let s = r+1 and w=x-1 inside the summation.

E[X] = rp

1−p

(w+s−1)!
(s−1)!w!∑
w=0

pw(1−p)s

E[X] = rp

1−p

(w+s−1
s−1 )∑
w=0

pw(1−p)s

We see that the summation is the sum over a the complete pmf of a negative binomial
random variable distributed NB(s,p), which is 1 (and can be verified by applying Newton’s
generalized binomial theorem3).

E[X] = rp

1−p

3 http://en.wikipedia.org/wiki/Binomial_theorem%23Newton.27s_generalized_binomial_theorem
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25.1.3 Variance

We derive the variance using the following formula:

Var[X] = E[X2]− (E[X])2

We have already calculated E[X] above, so now we will calculate E[X2] and then return to
this variance formula:

E[X2] =
∑
i

f(xi) ·x2 =
(x+r−1

r−1 )∑
x=0

px(1−p)r ·x2

E[X2] = 0 +
(x+r−1

r−1 )∑
x=1

px(1−p)rx2

E[X2] =

(x+r−1)!
(r−1)!x!∑
x=1

px(1−p)rx2

E[X2] = rp

1−p

(x+r−1)!
r!(x−1)!∑
x=1

px−1(1−p)r+1x

Again, let let s = r+1 and w=x-1.

E[X2] = rp

1−p

(w+s−1)!
(s−1)!w!∑
w=0

pw(1−p)s(w+ 1)

E[X2] = rp

1−p

(w+s−1
s−1 )∑
w=0

pw(1−p)s(w+ 1)

E[X2] = rp

1−p

(w+s−1
s−1 )∑
w=0

pw(1−p)sw+
(w+s−1

s−1 )∑
w=0

pw(1−p)s


The first summation is the mean of a negative binomial random variable distributed NB(s,p)
and the second summation is the complete sum of that variable’s pmf.
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E[X2] = rp

1−p

[
sp

1−p + 1
]

E[X2] = rp(1 + rp)
(1−p)2

We now insert values into the original variance formula.

Var[X] = rp(1 + rp)
(1−p)2 −

(
rp

1−p

)2

Var[X] = rp

(1−p)2

25.2 External links

• Interactive Negative Binomial Distribution Web Applet (Java)4

4 http://socr.ucla.edu/htmls/dist/Negative_Binomial_Distribution.html
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26 Continuous Distributions

A continuous statistic is a random variable that does not have any points at which there is
any distinct probability that the variable will be the corresponding number.

26.1 Cumulative Distribution Function

A continuous random variable, like a discrete random variable, has a cumulative distribution
function. Like the one for a discrete random variable, it also increases towards 1. Depending
on the random variable, it may reach one at a finite number, or it may not. The cdf is
represented by a capital F.

26.2 Probability Distribution Function

Unlike a discrete random variable, a continuous random variable has a probability density
function instead of a probability mass function. The difference is that the former must
integrate to 1, while the latter must have a total value of 1. The two are very similar,
otherwise. The pdf is represented by a lowercase f.

26.3 Special Values

The expected value for a continuous variable is defined as
∫∞
−∞xf(x)dx

The expected value of any function of a continuous variable g(x) is defined as∫∞
−∞ g(x)f(x)dx

The mean of a continuous or discrete distribution is defined as E[X]

The variance of a continuous or discrete distribution is defined as E[(X-E[X]2)]

Expectations can also be derived by producing the Moment Generating Function for the
distribution in question. This is done by finding the expected value E[etX]. Once the
Moment Generating Function has been created, each derivative of the function gives a
different piece of information about the distribution function.

d1x/d1y = mean

d2x/d2y = variance
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d3x/d3y = skewness

d4x/d4y = kurtosis
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27 Uniform Distribution

27.1 Continuous Uniform Distribution

The (continuous) uniform distribution, as its name suggests, is a distribution with proba-
bility densities that are the same at each point in an interval. In casual terms, the uniform
distribution shapes like a rectangle.

Mathematically speaking, the probability density function of the uniform distribution is
defined as

f (x) =
{

1
b−a ∀ real x ∈ [a,b]

And the cumulative distribution function is:

F (x) =


0, if x≤ a
x−a
b−a , if a < x < b

1, if x≥ b

27.1.1 Mean

We derive the mean as follows.

E[X] =
∫

−f(x)·xdx

As the uniform distribution is 0 everywhere but [a, b] we can restrict ourselves that interval

E[X] =
∫ b

a

1
b−a

xdx

E[X] = 1
(b−a)

1
2x

2
∣∣∣∣b
a

E[X] = 1
2(b−a)

[
b2−a2

]

E[X] = b+a

2
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27.1.2 Variance

We use the following formula for the variance.

Var(X) = E[X2]− (E[X])2

Var(X) =
[∫

−f(x)·x2dx
]
−
(
b+a

2

)2

Var(X) =
[∫ b

a

1
b−a

x2dx

]
− (b+a)2

4

Var(X) = 1
b−a

1
3x

3
∣∣∣∣b
a
− (b+a)2

4

Var(X) = 1
3(b−a) [b3−a3]− (b+a)2

4

Var(X) = 4(b3−a3)−3(b+a)2(b−a)
12(b−a)

Var(X) = (b−a)3

12(b−a)

Var(X) = (b−a)2

12

27.2 External links

• Interactive Uniform Distribution Web Applet (Java)1

1 http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html
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28 Normal Distribution

The Normal Probability Distribution is one of the most useful and more important distri-
butions in statistics. It is a continuous variable distribution. Although the mathematics of
this distribution can be quite off putting for students of a first course in statistics it can
nevertheless be usefully applied with out over complication.

The Normal distribution is used frequently in statistics for many reasons:

1) The Normal distribution has many convenient mathematical properties.

2) Many natural phenomena have distributions which when studied have been shown to be
close to that of the Normal Distribution.

3) The Central Limit Theorem shows that the Normal Distribution is a suitable model for
large samples regardless of the actual distribution.

28.1 Mathematical Characteristics of the Normal
Distribution

A continuous random variable , X, is normally distributed with a probability density func-
tion :

1
σ
√

2π exp
(
− (x−µ)2

2σ2

)
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29 F Distribution

Named after Sir Ronald Fisher, who developed the F distribution for use in determining
ANOVA critical values. The cutoff values in an F table are found using three variables-
ANOVA numerator degrees of freedom, ANOVA denominator degrees of freedom, and sig-
nificance level.

ANOVA is an abbreviation of analysis of variance. It compares the size of the variance
between two different samples. This is done by dividing the larger variance over the smaller
variance. The formula of the F statistic is:

F (r1, r2) = χ2
r1/r1
χ2

r2/r2

where χ2
r1 and χ2

r2 are the chi-square statistics of sample one and two respectively, and
r1and r2 are their degrees of freedom, i.e. the number of observations.

One example could be if you want to compare apples that look alike but are from different
trees and have different sizes. You want to investigate whether they have the same variance
of the weight on average.

There are three apples from the first tree that weigh 110, 121 and 143 grams respectively,
and four from the other which weigh 88, 93, 105 and 124 grams respectively. The mean
and variance of the first sample are 124.67 and 16.80 respectively, and of the second sample
102.50 and 16.01. The chi-square statistic of the first sample is
110−124.67

16.802 + 121−124.67
16.802 + 143−124.67

16.802 = 2.00,

and for the second sample
88−102.50

16.012 + 93−102.50
16.012 + 105−102.50

16.012 + 124−102.50
16.012 = 3.00.

The F statistic is now F = 3/4
2/3 = 1.125. The Chi-square statistic divided by degrees of

freedom appears on the nominator for the second sample because it was larger than that of
the first sample.

The critical value of the F distribution for 4 degrees of freedom. in the nominator and 3
degrees of freedom in the denominator, i.e. F(f1=4, f2=3) is 9.12 at a 5% level of confidence.
Since the test statistic 1.125 is smaller than the critical value, we cannot reject the null
hypothesis that they have the same variance. The conclusion is that they have the same
variance.
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29.1 External links

• Interactive F Distribution Web Applet (Java)1

1 http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html
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30 Testing Statistical Hypothesis

Figure 17: Two examples of how the means of two distributions may be different, leading
to two different statistical hypotheses
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Testing Statistical Hypothesis

There are many different tests for the many different kinds of data. A way to get started
is to understand what kind of data you have. Are the variables quantitative or qualitative?
Certain tests are for certain types of data depending on the size, distribution or scale. Also,
it is important to understand how samples of data can differ. The 3 primary characteristics
of quantitative data are: central tendency, spread, and shape.

When most people "test" quantitative data, they tend to do tests for central tendency.
Why? Well, let’s say you had 2 sets of data and you wanted to see if they were different
from each other. One way to test this would be to test to see if their central tendency (their
means for example) differ.

Imagine two symmetric, bell shaped curves with a vertical line drawn directly in the middle
of each, as shown here. If one sample was a lot different than another (a lot higher in
values,etc.) then the means would be different typically. So when testing to see if two
samples are different, usually two means are compared.

Two medians (another measure of central tendency) can be compared also. Or perhaps
one wishes to test two samples to see if they have the same spread or variation. Because
statistics of central tendency, spread, etc. follow different distributions - different testing
procedures must be followed and utilized.

In the end, most folks summarize the result of a hypothesis test into one particular value
- the p-value. If the p-value is smaller than the level of significance (usually α = 5%, but
even lower in other fields of science i.e. Medicine) then the zero-hypothesis rejected and
the alternative hypothesis accepted. The p-value is actually the probability of making a
statistical error. If the p-value is higher than the level of significance you accept the zero-
hypothesis and reject the alternative hypothesis, however that does not necessarily mean
that the zero-hypothesis is correct.
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31 Purpose of Statistical Tests

31.1 Purpose of Statistical Tests

In general, the purpose of statistical tests is to determine whether some hypothesis is ex-
tremely unlikely given observed data.

There are two common philosophical approaches to such tests, significance testing (due to
Fisher) and hypothesis testing (due to Neyman and Pearson).

Significance testing aims to quantify evidence against a particular hypothesis being true.
We can think of it as testing to guide research. We believe a certain statement may be true
and want to work out whether it is worth investing time investigating it. Therefore, we
look at the opposite of this statement. If it is quite likely then further study would seem to
not make sense. However if it is extremely unlikely then further study would make sense.

A concrete example of this might be in drugs testing. We have a number of drugs that we
want to test and only limited time, so we look at the hypothesis that an individual drug
has no positive effect whatsoever, and only look further if this is unlikley.

Hypothesis testing rather looks at evidence for a particular hypothesis being true. We
can think of this as a guide to making a decision. We need to make a decision soon, and
suspect that a given statement is true. Thus we see how unlikely we are to be wrong, and
if we are sufficiently unlikely to be wrong we can assume that this statement is true. Often
this decision is final and cannot be changed.

Statisticians often overlook these differences and incorrectly treat the terms "significance
test" and "hypothesis test" as though they are interchangeable.

A data analyst frequently wants to know whether there is a difference between two sets of
data, and whether that difference is likely to occur due to random fluctuations, or is instead
unusual enough that random fluctuations rarely cause such differences.

In particular, frequently we wish to know something about the average (or mean), or about
the variability (as measured by variance or standard deviation).

Statistical tests are carried out by first making some assumption, called the Null Hypothesis,
and then determining whether the data observed is unlikely to occur given that assumption.
If the probability of seeing the observed data is small enough under the assumed Null
Hypothesis, then the Null Hypothesis is rejected.

A simple example might help. We wish to determine if men and women are the same height
on average. We select and measure 20 women and 20 men. We assume the Null Hypothesis
that there is no difference between the average value of heights for men vs. women. We
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Purpose of Statistical Tests

can then test using the t-test1 to determine whether our sample of 40 heights would be
unlikely to occur given this assumption. The basic idea is to assume heights are normally
distributed, and to assume that the means and standard deviations are the same for women
and for men. Then we calculate the average of our 20 men, and of our 20 women, we also
calculate the sample standard deviation for each. Then using the t-test of two means with
40-2 = 38 degrees of freedom we can determine whether the difference in heights between
the sample of men and the sample of women is sufficiently large to make it unlikely that
they both came from the same normal population.

1 Chapter 36 on page 127
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32 Different Types of Tests

A statistical test is always about one or more parameters of the concerned population
(distribution). The appropiate test depends on the type of null and alternative hypothesis
about this (these) parameter(s) and the available information from the sample.

32.1 Example

It is conjectured that British children gain more weight lately. Hence the population mean
µ of the weight X of children of let’s say 12 years of age is the parameter at stake. In the
recent past the mean weight of this group of children turned out to be 45 kg. Hence the
null hypothesis (of no change) is:

H0 : µ= 45

.

As we suspect a gain in weight, the alternative hypothesis is:

H1 : µ > 45

.

A random sample of 100 children shows an average weight of 47 kg with a standard deviation
of 8 kg.

Because it is reasonable to assume that the weights are normally distributed, the appropriate
test will be a t-test, with test statistic:

T = X̄−45
S

√
100

.

Under the null hypothesis T will be Student distributed with 99 degrees of freedom, which
means approximately standard normally distributed.

The null hypothesis will be rejected for large values of T. For this sample the value t of T
is:
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t= 47−45
8
√

100 = 2.5

.

Is this a large value? That depends partly on our demands. The so called p-value of the
observed value t is:

p= P (T ≥ t;H0) = P (T ≥ 2.5;H0)≈ P (Z ≥ 2.5)< 0.01

,

in which Z stands for a standard normally distributed random variable.

If we are not too critical this is small enough, so reason to reject the null hypothesis and to
assume our conjecture to be true.

Now suppose we have lost the individual data, but still know that the maximum weight in
the sample was 68 kg. It is not possible then to use the t-test, and instead we have to use
a test based on the statistic max(X).

It might also be the case that our assumption on the distribution of the weight is question-
able. To avoid discussion we may use a distribution free test instead of a t-test.

A statistical test begins with a hypothesis; the form of that hypothesis determines the
type(s) of test(s) that can be used. In some cases, only one is appropriate; in others, one
may have some choice.

For example: if the hypothesis concerns the value of a single population mean (µ), then a
one sample test for mean is indicated. Whether the z-test or t-test should be used depends
on other factors (each test has its own requirements).

A complete listing of the conditions under which each type of test is indicated is probably
beyond the scope of this work; refer to the sections for the various types of tests for more
information about the indications and requirements for each test.
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33 z Test for a Single Mean

The Null Hypothesis should be an assumption concerning the value of the population mean.
The data should consist of a single sample of quantitative data from the population.

33.1 Requirements

The sample should be drawn from a population from which the Standard Deviation (or
Variance) is known. Also, the measured variable (typically listed as x− x̄ is the sample
statistic) should have a Normal Distribution.

Note that if the distribution of the variable in the population is non-normal (or unknown),
the z-test can still be used for approximate results, provided the sample size is sufficiently
large. Historically, sample sizes of at least 30 have been considered sufficiently large; reality
is (of course) much more complicated, but this rule of thumb is still in use in many textbooks.

If the population Standard Deviation is unknown, then a z-test is typically not appropriate.
However, when the sample size is large, the sample standard deviation can be used as an
estimate of the population standard deviation, and a z-test can provide approximate results.

33.2 Definitions of Terms

µ;

= Population Mean

σx

= Population Standard Deviation

x̄

= Sample Mean
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z Test for a Single Mean

σx̄

= Sample Standard Deviation

N

= Sample Population

33.3 Procedure

• The Null Hypothesis:

This is a statement of no change or no effect; often, we are looking for evidence that this
statement is no longer true.

H0 : µ = µ0

• The Alternate Hypothesis:

This is a statement of inequality; we are looking for evidence that this statement is true.

H1 : µ < µ0 or

H1 : µ > µ0 or

H1 : µ 6= µ0

• The Test Statistic:

z = x̄−µ0
σ/
√
n

• The Significance (p-value)

Calculate the probability of observing a value of z (from a Standard Normal Distribution)
using the Alternate Hypothesis to indicate the direction in which the area under the Prob-
ability Density Function is to be calculated. This is the Attained Significance, or p-value.

Note that some (older) methods first chose a Level Of Significance, which was then trans-
lated into a value of z. This made more sense (and was easier!) in the days before computers
and graphics calculators.

• Decision
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Worked Examples

The Attained Significance represents the probability of obtaining a test statistic as extreme,
or more extreme, than ours - if the null hypothesis is true.

If the Attained Significance (p-value) is sufficiently low, then this indicates that our test
statistic is unusual (rare) - we usually take this as evidence that the null hypothesis is in
error. In this case, we reject the null hypothesis.

If the p-value is large, then this indicates that the test statistic is usual (common) - we take
this as a lack of evidence against the null hypothesis. In this case, we fail to reject the null
hypothesis.

It is common to use 5% as the dividing line between the common and the unusual; again,
reality is more complicated. Sometimes a lower level of uncertainty must be chosen should
the consequences of error results in a decision that can injure or kill people or do great
economic harm. We would more likely tolerate a drug that kills 5% of patients with a
terminal cancer but cures 95% of all patients, but we would hardly tolerate a cosmetic that
disfigures 5% of those who use it.

33.4 Worked Examples

33.4.1 Are The Kids Above Average?

Scores on a certain test of mathematical aptitude have mean µ = 50 and standard deviation
σ = 10. An amateur researcher believes that the students in his area are brighter than
average, and wants to test his theory.

The researcher has obtained a random sample of 45 scores for students in his area. The
mean score for this sample is 52.

Does the researcher have evidence to support his belief?

The null hypothesis is that there is no difference, and that the students in his area are no
different than those in the general population; thus,

H0 : µ = 50

(where µ represents the mean score for students in his area)

He is looking for evidence that the students in his area are above average; thus, the alternate
hypothesis is

H1 : µ > 50

Since the hypothesis concerns a single population mean, a z-test is indicated. The sample
size is fairly large (greater than 30), and the standard deviation is known, so a z-test is
appropriate.
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z = x̄−µ0
σ/
√
n

= 52−50
10/
√

45
= 1.3416

We now find the area under the Normal Distribution to the right of z = 1.3416 (to the right,
since the alternate hypothesis is to the right). This can be done with a table of values, or
software- I get a value of 0.0899.

If the null hypothesis is true (and these students are no better than the general population),
then the probability of obtaining a sample mean of 52 or higher is 8.99%. This occurs fairly
frequently (using the 5% rule), so it does not seem unusual. I fail to reject the null hypothesis
(at the 5% level).

It appears that the evidence does not support the researcher’s belief.

33.4.2 Is The Machine Working Correctly?

Sue is in charge of Quality Control at a bottling facility. Currently, she is checking the
operation of a machine that is supposed to deliver 355 mL of liquid into an aluminum can.
If the machine delivers too little, then the local Regulatory Agency may fine the company.
If the machine delivers too much, then the company may lose money. For these reasons,
Sue is looking for any evidence that the amount delivered by the machine is different from
355 mL.

During her investigation, Sue obtains a random sample of 10 cans, and measures the fol-
lowing volumes:

355.02 355.47 353.01 355.93 356.66 355.98 353.74 354.96 353.81 355.79

The machine’s specifications claim that the amount of liquid delivered varies according to
a normal distribution, with mean µ = 355 mL and standard deviation σ = 0.05 mL.

Do the data suggest that the machine is operating correctly?

The null hypothesis is that the machine is operating according to its specifications; thus

H0 : µ = 355

(where µ is the mean volume delivered by the machine)

Sue is looking for evidence of any difference; thus, the alternate hypothesis is

H1 : µ 6= 355

Since the hypothesis concerns a single population mean, a z-test is indicated. The pop-
ulation follows a normal distribution, and the standard deviation is known, so a z-test is
appropriate.
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In order to calculate the test statistic (z), we must first find the sample mean from the data.
Use a calculator or computer to find that x̄= 355.037.

z = x̄−µ0
σ/
√
n

= 355.037−355
0.05/

√
10

= 2.34

The calculation of the p-value will be a little different. If we only find the area under the
normal curve above z = 2.34, then we have found the probability of obtaining a sample
mean of 355.037 or higher—what about the probability of obtaining a low value?

In the case that the alternate hypothesis uses 6=, the p-value is found by doubling the tail
area—in this case, we double the area above z = 2.34.

The area above z = 2.34 is 0.0096; thus, the p-value for this test is 0.0192.

If the machine is delivering 355 mL, then the probability of obtaining a sample mean this
far (0.037 mL) or farther from 355 mL is 0.0096, or 0.96%. This is pretty rare; I’ll reject
the null hypothesis.

It appears that the machine is not working correctly.

N.B.: since the alternate hypothesis is 6=, we cannot conclude that the machine is delivering
more than 355 mL—we can only say that the amount is different from 355 mL.
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34 z Test for Two Means

34.1 Indications

The Null Hypothesis should be an assumption about the difference in the population means
for two populations (note that the same quantitative variable must have been measured in
each population). The data should consist of two samples of quantitative data (one from
each population). The samples must be obtained independently from each other.

34.2 Requirements

The samples must be drawn from populations which have known Standard Deviations (or
Variances). Also, the measured variable in each population (generically denoted x1 and x2)
should have a Normal Distribution.

Note that if the distributions of the variables in the populations are non-normal (or un-
known), the two-sample z-test can still be used for approximate results, provided the com-
bined sample size (sum of sample sizes) is sufficiently large. Historically, a combined sample
size of at least 30 has been considered sufficiently large; reality is (of course) much more
complicated, but this rule of thumb is still in use in many textbooks.

34.3 Procedure

• The Null Hypothesis:

H0 : µ1 - µ2 = δ

in which δ is the supposed difference in the expected values under the null hypothesis.

• The Alternate Hypothesis:

H0 : µ1 - µ2 < δ

H0 : µ1 - µ2 > δ

H0 : µ1 - µ2 6= δ
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z Test for Two Means

For more information about the Null and Alternate Hypotheses, see the page on the z test
for a single mean.

• The Test Statistic:

z = (x̄1− x̄2)− δ√
σ2

1
n1

+ σ2
2
n2

Usually, the null hypothesis is that the population means are equal; in this case, the formula
reduces to

z = x̄1− x̄2√
σ2

1
n1

+ σ2
2
n2

In the past, the calculations were simpler if the Variances (and thus the Standard Devi-
ations) of the two populations could be assumed equal. This process is called Pooling,
and many textbooks still use it, though it is falling out of practice (since computers and
calculators have all but removed any computational problems).

x̄1− x̄2

σ
√

1
n1

+ 1
n2

• The Significance (p-value)

Calculate the probability of observing a value of z (from a Standard Normal Distribution)
using the Alternate Hypothesis to indicate the direction in which the area under the Prob-
ability Density Function is to be calculated. This is the Attained Significance, or p-value.

Note that some (older) methods first chose a Level Of Significance, which was then trans-
lated into a value of z. This made more sense (and was easier!) in the days before computers
and graphics calculators.

• Decision

The Attained Significance represents the probability of obtaining a test statistic as extreme,
or more extreme, than ours—if the null hypothesis is true.

If the Attained Significance (p-value) is sufficiently low, then this indicates that our test
statistic is unusual (rare)—we usually take this as evidence that the null hypothesis is in
error. In this case, we reject the null hypothesis.

If the p-value is large, then this indicates that the test statistic is usual (common)—we take
this as a lack of evidence against the null hypothesis. In this case, we fail to reject the null
hypothesis.
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It is common to use 5% as the dividing line between the common and the unusual; again,
reality is more complicated.

34.4 Worked Examples

34.4.1 Do Professors Make More Money at Larger Universities?

Universities and colleges in the United States of America are categorized by the highest
degree offered. Type IIA institutions offer a Master’s Degree, and type IIB institutions
offer a Baccalaureate degree. A professor, looking for a new position, wonders if the salary
difference between type IIA and IIB institutions is really significant.

He finds that a random sample of 200 IIA institutions has a mean salary (for full professors)
of $54,218.00, with standard deviation $8,450. A random sample of 200 IIB institutions has
a mean salary (for full professors) of $46,550.00, with standard deviation $9,500 (assume
that the sample standard deviations are in fact the population standard deviations).

Do these data indicate a significantly higher salary at IIA institutions?

The null hypothesis is that there is no difference; thus

H0 : µA = µB

(where µA is the true mean full professor salary at IIA institutions, and µB is the mean at
IIB institutions)

He is looking for evidence that IIA institutions have a higher mean salary; thus the alternate
hypothesis is

H1 : µA > µB

Since the hypotheses concern means from independent samples (we’ll assume that these
are independent samples), a two sample test is indicated. The samples are large, and the
standard deviations are known (assumed?), so a two sample z-test is appropriate.

z = µA−µB√
σ2

A
nA

+ σ2
B
nB

= 54218−46550√
84502

200 + 95002

200

= 8.5292

Now we find the area to the right of z = 8.5292 in the Standard Normal Distribution. This
can be done with a table of values or software—I get 0.

If the null hypothesis is true, and there is no difference in the salaries between the two
types of institutions, then the probability of obtaining samples where the mean for IIA
institutions is at least $7,668 higher than the mean for IIB institutions is essentially zero.
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This occurs far too rarely to attribute to chance variation; it seems quite unusual. I reject
the null hypothesis (at any reasonable level of significance!).

It appears that IIA schools have a significantly higher salary than IIB schools.

34.4.2 Example 2
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35 t Test for a single mean

The t- test is the most powerful parametric test for calculating the significance of a small
sample mean.

A one sample t-test has the following null hypothesis:

H0 : µ= c

where the Greek letter µ (mu) represents the population mean and c represents its assumed
(hypothesized) value. In statistics it is usual to employ Greek letters for population param-
eters and Roman letters for sample statistics. The t-test is the small sample analog of the
z test which is suitable for large samples. A small sample is generally regarded as one of
size n<30.

A t-test is necessary for small samples because their distributions are not normal. If the
sample is large (n>=30) then statistical theory says that the sample mean is normally
distributed and a z test for a single mean can be used. This is a result of a famous statistical
theorem, the Central limit theorem.

A t-test, however, can still be applied to larger samples and as the sample size n grows
larger and larger, the results of a t-test and z-test become closer and closer. In the limit,
with infinite degrees of freedom, the results of t and z tests become identical.

In order to perform a t-test, one first has to calculate the "degrees of freedom." This
quantity takes into account the sample size and the number of parameters that are being
estimated. Here, the population parameter, mu is being estimated by the sample statistic
x-bar, the mean of the sample data. For a t-test the degrees of freedom of the single
mean is n-1. This is because only one population parameter (the population mean)is being
estimated by a sample statistic (the sample mean).

degrees of freedom (df)=n-1

For example, for a sample size n=15, the df=14.

35.0.3 Example

A college professor wants to compare her students’ scores with the national average. She
chooses an SRS of 20 students, who score an average of 50.2 on a standardized test. Their
scores have a standard deviation of 2.5. The national average on the test is a 60. She wants
to know if her students scored ’significantlylower than the national average.

Significance tests follow a procedure in several steps.
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Step 1

First, state the problem in terms of a distribution and identify the parameters of interest.
Mention the sample. We will assume that the scores (X) of the students in the professor’s
class are approximately normally distributed with unknown parameters µ and σ

Step 2

State the hypotheses in symbols and words.

HO : µ= 60

The null hypothesis is that her students scored on par with the national average.

HA : µ < 60

The alternative hypothesis is that her students scored lower than the national average.

Step 3

Secondly, identify the test to be used. Since we have an SRS of small size and do not know
the standard deviation of the population, we will use a one-sample t-test.

The formula for the t-statistic T for a one-sample test is as follows:

T = X−60
S/
√

20

where X is the sample mean and S is the sample standard deviation.

A quite common mistake is to say that the formula for the t-test statistic is:

T = x−µ
s/
√
n

This is not a statistic, because µ is unknown, which is the crucial point in such a problem.
Most people even don’t notice it. Another problem with this formula is the use of x and s.
They are to be considered the sample statistics and not their values.

The right general formula is:

T = X− c
S/
√
n
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in which c is the hypothetical value for µ specified by the null hypothesis.

(The standard deviation of the sample divided by the square root of the sample size is
known as the "standard error" of the sample.)

Step 4

State the distribution of the test statistic under the null hypothesis. Under H0 the statistic
T will follow a Student’s distribution with 19 degrees of freedom: T ∼ τ · (20−1).

Step 5

Compute the observed value t of the test statistic T, by entering the values, as follows:

t= x−60
s/
√

20
= 50.2−60.0

2.5/
√

20
= −9.8

2.5/4.47 = −9.8
0.559 =−17.5

Step 6

Determine the so-called p-value of the value t of the test statistic T. We will reject the null
hypothesis for too small values of T, so we compute the left p-value:

p-value
= P (T ≤ t;H0) = P (T (19)≤−17.5)≈ 0

The Student’s distribution gives T (19) = 1.729 at probabilities 0.95 and degrees of freedom
19. The p-value is approximated at 1.777e-13.

Step 7

Lastly, interpret the results in the context of the problem. The p-value indicates that
the results almost certainly did not happen by chance and we have sufficient evidence to
reject the null hypothesis. The professor’s students did score significantly lower than
the national average.

35.0.4 See also

• w:Errors and residuals in statistics1

1 http://en.wikipedia.org/wiki/Errors%20and%20residuals%20in%20statistics
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36 t Test for Two Means

In both the one- and two-tailed versions of the small two-sample t-test, we assume that the
means of the two populations are equal. To use a t-test for small (independent) samples,
the following conditions must be met:

1. The samples must be selected randomly.
2. The samples must be independent.
3. Each population must have a normal distribution.

A small two sample t-test is used to test the difference between two population means m1
and m2 when the sample size for at least one population is less than 30.The standardized
test statistic is:
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37 One-Way ANOVA F Test

The one-way ANOVA F-test is used to identify if there are differences between subject
effects. For instance, to investigate the effect of a certain new drug on the number of white
blood cells, in an experiment the drug is given to three different groups, one of healthy
people, one with people with a light form of the considered disease and one with a severe form
of the disease. Generally the analysis of variance identifies whether there is a significant
difference in effect of the drug on the number of white blood cells between the groups.
Significant refers to the fact that there will always be difference between the groups and
also within the groups, but the purpose is to investigate whether the difference between the
groups are large compared to the differences within the groups. To set up such an experiment
three assumptions must be validated before calculating an F statistic: independent samples,
homogeneity of variance, and normality. The first assumption suggests that there is no
relation between the measurements for different subjects. Homogeneity of variance refers
to equal variances among the different groups in the experiment (e.g., drug vs. placebo).
Furthermore, the assumption of normality suggests that the distribution of each of these
groups should be approximately normally distributed.

37.1 Model

The situation is modelled in the following way. The measurement of the j-th test person in
group i is indicated by:

Xij = µ+αi+Uij

.

This reads: the outcome of the measurement for j in group i is due to a general effect
indicated by µ , an effect due to the group, αi and an individual contribution Uij .

The individual, or random, contributions Uij , often referred to as disturbances, are con-
sidered to be independently, normally distributed, all with expected value 0 and standard
deviation σ.

To make the model unambiguous the group effects are restrained by the condition:

∑
i

αi = 0

.
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Now. a notational note: it is common practice to indicate averages over one or more indices
by writing a dot in the place of the index or indices. So for instance

Xi. = 1
N

N∑
j=1

Xij

The analysis of variance now divides the total "variance" in the form of the total "sum
of squares" in two parts, one due to the variation within the groups and one due to the
variation between the groups:

SST =
∑
ij

(Xij−X..)2 =
∑
ij

(Xij−Xi.+Xi.−X..)2 =
∑
ij

(Xij−Xi.)2 +
∑
ij

(Xi.−X..)2

.

We see the term sum of squares of error:

SSE =
∑
ij

(Xij−Xi.)2

of the total squared differences of the individual measurements from their group averages,
as an indication of the variation within the groups, and the term sum of square of the factor

SSA=
∑
ij

(Xi.−X..)2

of the total squared differences of the group means from the overall mean, as an indication
of the variation between the groups.

Under the null hypothesis of no effect:

H0 : ∀i αi = 0

we find:

SSE/σ2

is chi-square distributed with a(m-1) degrees of freedom, and
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SSA/σ2

is chi-square distributed with a-1 degrees of freedom,

where a is the number of groups and m is the number of persons in each group.

Hence the quotient of the so-called mean sum of squares:

MSA= SSA

a−1

and

MSE = SSE

a(m−1)

may be used as a test statistic

F = MSA

MSE

which under the null hypothesis is F-distributed with a−1 degrees of freedom in the nom-
inator and a(m−1) in the denominator, because the unknown parameter σ does not play
a role since it is cancelled out in the quotient.
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38 Testing whether Proportion A Is
Greater than Proportion B in
Microsoft Excel

A running example from the 2004 American Presidential Race follows. It should be clear
that the choice of poll and who is leading is irrelevant to the presentation of the con-
cepts. According to an October 2nd Poll by Newsweek1 ( link2), 47% of 1,013 registered
voters3 would vote for John Kerry4/John Edwards5 if the election were held to-
day. 45% would vote for George Bush6/Dick Cheney7, and 2% would vote for Ralph
Nader8/Peter Camejo9.

• Open a new Blank Workbook in the program Microsoft Excel10.
• Enter Kerry’s reported percentage p in cell A1 (0.47).
• Enter Bush’s reported percentage q in cell B1 (0.45).
• Enter the number of respondents N in cell C1 (1013). This can be found in most respon-

sible reports on polls.
• In cell A2, copy and paste the next line of text in its entirety and press Enter. This is

the Microsoft Excel expression of the standard error of the difference as shown above11.

=sqrt(A1*(1-A1)/C1+B1*(1-B1)/C1+2*A1*B1/C1)

• In cell A3, copy and paste the next line of text in its entirety and press Enter. This
is the Microsoft Excel expression of the probability that Kerry is leading based on the
normal distribution12 given the logic here13.

1 http://en.wikipedia.org/wiki/Newsweek
2 http://www.msnbc.msn.com/id/6159637/site/newsweek/
3 http://en.wikipedia.org/wiki/voters
4 http://en.wikipedia.org/wiki/John%20Kerry
5 http://en.wikipedia.org/wiki/John%20Edwards
6 http://en.wikipedia.org/wiki/George%20Bush
7 http://en.wikipedia.org/wiki/Dick%20Cheney
8 http://en.wikipedia.org/wiki/Ralph%20Nader
9 http://en.wikipedia.org/wiki/Peter%20Camejo
10 http://en.wikipedia.org/wiki/Microsoft%20Excel
11 http://en.wikipedia.org/wiki/Margin%20of%20error%23Comparing%20percentages%3A%20the%

20probability%20of%20leading
12 http://en.wikipedia.org/wiki/normal%20distribution
13 http://en.wikipedia.org/wiki/Margin%20of%20error%23Comparing%20percentages%3A%20the%

20probability%20of%20leading
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Testing whether Proportion A Is Greater than Proportion B in Microsoft Excel

=normdist((A1-B1),0,A2,1)

• Don’t forget that the percentages will be in decimal form. The percentage will be 0.5,
or 50% if A1 and B1 are the same, of course.

The above text might be enough to do the necessary calculation, it doesn’t contribute to
the understanding of the statistical test involved. Much too often people think statistics is
a matter of calculation with complex formulas.

So here is the problem: Let p be the population fraction of the registered voters who vote
for Kerry and q likewise for Bush. In a poll n = 1013 respondents are asked to state their
choice. A number of K respondents says to choose Kerry, a number B says to vote for
Bush. K and B are random variables. The observed values for K and B are resp. k and
b (numbers). So k/n is an estimate of p and b/n an estimate of q. The random variables
K and B follow a trinomial distribution with parameters n, p, q and 1-p-q. Will Kerry be
ahead of Bush? That is to say: wiil p > q? To investigate this we perform a statistical test,
with null hypothesis:

H0 : p= q

against the alternative

H1 : p > q

.

What is an appropriate test statistic T? We take:

T =K−B

.

(In the above calculation T = K
n −

B
n = K−B

n is taken, which leads to the same calculation.)

We have to state the distribution of T under the null hypothesis. We may assume T is
approximately normally distributed.

It is quite obvious that its expectation under H0 is:

E0T = 0

.

Its variance under H0 is not as obvious.
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var0(T ) = var(K−B) = var(K) +var(B)−2cov(K,B) = np(1−p) +nq(1− q) + 2npq

.

We approximate the variance by using the sample fractions instead of the population frac-
tions:

var0(T )≈ 1013×0.47(1−0,46) + 1013×0.45(1−0.45) + 2×1013×0,47×0.45≈ 931

.

The standard deviation s will approximately be:

s=
√
var0(T )≈

√
931 = 30.5

.

In the sample we have found a value t = k - b = (0.47-0.45)1013 = 20.26 for T. We will
reject the null hypothesis in favour of the alternative for large values of T. So the question
is: is 20.26 to be considered a large value for T? The criterion will be the so called p-value
of this outcome:

p−value= P (T ≥ t;H0) = P (T ≥ 20.26;H0) = P (Z ≥ 20.26
30.5 ) = 1−Φ(0.67) = 0.25

.

This is a very large p-value, so there is no reason whatsoever to reject the null hypothesis.
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39 Chi-Squared Tests

39.1 General idea

Assume you have observed absolute frequencies oi and expected absolute frequencies ei
under the Null hypothesis of your test then it holds

V =
∑
i

(oi−ei)2

ei
≈ χ2

f .

i might denote a simple index running from 1, ..., I or even a multiindex (i1, ..., ip) running
from (1, ...,1) to (I1, ..., Ip).

The test statistics V is approximately χ2 distributed, if

1. for all absolute expected frequencies ei holds ei ≥ 1 and
2. for at least 80% of the absolute expected frequencies ei holds ei ≥ 5.

Note: In different books you might find different approximation conditions, please feel free
to add further ones.

The degrees of freedom can be computed by the numbers of absolute observed frequencies
which can be chosen freely. We know that the sum of absolute expected frequencies is∑
i oi = n

which means that the maximum number of degrees of freedom is I − 1. We might have
to subtract from the number of degrees of freedom the number of parameters we need to
estimate from the sample, since this implies further relationships between the observed
frequencies.

39.2 Derivation of the distribution of the test statistic

Following Boero, Smith and Wallis (2002) we need knowledge about multivariate statistics
to understand the derivation.

The random variable O describing the absolute observed frequencies (o1, ...,ok) in a sample
has a multinomial distribution O∼M(n;p1, ...,pk) with n the number of observations in the
sample, pi the unknown true probabilities. With certain approximation conditions (central
limit theorem) it holds that

O ∼M(n;p1, ...,pk)≈Nk(µ;Σ)

with Nk the multivariate k dimensional normal distribution, µ= (np1, ...,npk) and
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Σ = (σij)i,j=1,...,k =
{
−npipj , if i 6= j

npi(1−pi) otherwise
.

The covariance matrix Σ has only rank k−1, since p1 + ...+pk = 1.

If we considered the generalized inverse Σ− then it holds that

(O−µ)TΣ−(O−µ) =
∑
i

(oi−ei)2

ei
∼ χ2

k−1

distributed (for a proof see Pringle and Rayner, 1971).

Since the multinomial distribution is approximately multivariate normal distributed, the
term is∑
i

(oi−ei)2

ei
≈ χ2

k−1

distributed. If further relations between the observed probabilities are there then the rank
of Σ will decrease further.

A common situation is that parameters on which the expected probabilities depend needs
to be estimated from the observed data. As said above, usually is stated that the degrees
of freedom for the chi square distribution is k− 1− r with r the number of estimated
parameters. In case of parameter estimation with the maximum-likelihood method this is
only true if the estimator is efficient (Chernoff and Lehmann, 1954). In general it holds
that degrees of freedom are somewhere between k−1− r and k−1.

39.3 Examples

The most famous examples will be handled in detail at further sections: χ2 test for inde-
pendence, χ2 test for homogeneity and χ2 test for distributions.

The χ2 test can be used to generate "quick and dirty" test, e.g.

H0 : The random variable X is symmetrically distributed versus

H1 : the random variable X is not symmetrically distributed.

We know that in case of a symmetrical distribution the arithmetic mean x̄ and median
should be nearly the same. So a simple way to test this hypothesis would be to count how
many observations are less than the mean (n−)and how many observations are larger than
the arithmetic mean (n+). If mean and median are the same than 50% of the observation
should smaller than the mean and 50% should be larger than the mean. It holds

V = (n−−n/2)2

n/2 + (n+−n/2)2

n/2 ≈ χ2
1.

39.4 References

• Boero, G., Smith, J., Wallis, K.F. (2002). The properties of
some goodness-of-fit test, University of Warwick, Department of
Economics, The Warwick Economics Research Paper Series 653,
http://www2.warwick.ac.uk/fac/soc/economics/research/papers/twerp653.pdf
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40 Distributions Problems

A normal distribution has μ = 100 and σ = 15. What percent of the distribution is greater
than 120?
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41 Numerical Methods

Often the solution of statistical problems and/or methods involve the use of tools from
numerical mathematics. An example might be Maximum-Likelihood estimation1 of
Θ̂which involves the maximization of the Likelihood function2 L:

Θ̂ = maxθ L(θ|x1, ...,xn).

The maximization here requires the use of optimization routines. Other numerical methods
and their application in statistics are described in this section.

Contents of this section:

• Basic Linear Algebra and Gram-Schmidt Orthogonalization3

This section is dedicated to the Gram-Schmidt Orthogonalization which occurs frequently
in the solution of statistical problems. Additionally some results of algebra theory which
are necessary to understand the Gram-Schmidt Orthogonalization are provided. The Gram-
Schmidt Orthogonalization is an algorithm which generates from a set of linear dependent
vectors a new set of linear independent vectors which span the same space. Computation
based on linear independent vectors is simpler than computation based on linear dependent
vectors.

• Unconstrained Optimization4

Numerical Optimization occurs in all kind of problem - a prominent example being the
Maximum-Likelihood estimation as described above. Hence this section describes one
important class of optimization algorithms, namely the so-called Gradient Methods. Af-
ter describing the theory and developing an intuition about the general procedure, three
specific algorithms (the Method of Steepest Descent, the Newtonian Method, the class of
Variable Metric Methods) are described in more detail. Especially we provide an (graphi-
cal) evaluation of the performance of these three algorithms for specific criterion functions
(the Himmelblau function and the Rosenbrock function). Furthermore we come back to
Maximum-Likelihood estimation and give a concrete example how to tackle this problem
with the methods developed in this section.

• Quantile Regression5

In OLS, one has the primary goal of determining the conditional mean of random variable
Y , given some explanatory variable xi , E[Y |xi]. Quantile Regression goes beyond this and

1 http://en.wikipedia.org/wiki/Maximum_likelihood
2 http://en.wikipedia.org/wiki/Likelihood
3 http://en.wikibooks.org/wiki/Statistics%3ANumerical%20Methods%2FBasic%20Linear%

20Algebra%20and%20Gram-Schmidt%20Orthogonalization
4 http://en.wikibooks.org/wiki/Statistics%3ANumerical%20Methods%2FOptimization
5 http://en.wikibooks.org/wiki/Statistics%3ANumerical%20Methods%2FQuantile%20Regression
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enables us to pose such a question at any quantile of the conditional distribution function.
It thereby focuses on the interrelationship between a dependent variable and its explanatory
variables for a given quantile.

• Numerical Comparison of Statistical Software6

Statistical calculations require an extra accuracy and are open to some errors such as
truncation or cancellation error etc. These errors occur due to binary representation and
finite precision and may cause inaccurate results. In this work we are going to discuss the
accuracy of the statistical software, different tests and methods available for measuring the
accuracy and the comparison of different packages.

• Numerics in Excel7

The purpose of this paper is to evaluate the accuracy of MS Excel in terms of statistical
procedures and to conclude whether the MS Excel should be used for (statistical) scientific
purposes or not. The evaluation is made for MS Excel versions 97, 2000, XP and 2003.

• Random Number Generation8

6 http://en.wikibooks.org/wiki/Statistics%3ANumerical%20Methods%2FNumerical%20Comparison%
20of%20Statistical%20Software

7 http://en.wikibooks.org/wiki/Statistics%3ANumerical%20Methods%2FNumerics%20in%20Excel
8 http://en.wikibooks.org/wiki/Statistics%3ANumerical%20Methods%2FRandom%20Number%

20Generation
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42 Basic Linear Algebra and
Gram-Schmidt Orthogonalization

42.1 Introduction

Basically, all the sections found here can be also found in a linear algebra book. However,
the Gram-Schmidt Orthogonalization is used in statistical algorithm and in the solution
of statistical problems. Therefore, we briefly jump into the linear algebra theory which is
necessary to understand Gram-Schmidt Orthogonalization.

The following subsections also contain examples. It is very important for further under-
standing that the concepts presented here are not only valid for typical vectors as tuple of
real numbers, but also functions that can be considered vectors.

42.2 Fields

42.2.1 Definition

A set R with two operations + and ∗ on its elements is called a field (or short (R,+,∗)), if
the following conditions hold:

1. For all α,β ∈R holds α+β ∈R
2. For all α,β ∈R holds α+β = β+α (commutativity)
3. For all α,β,γ ∈R holds α+ (β+γ) = (α+β) +γ (associativity)
4. It exist a unique element 0, called zero, such that for all α ∈R holds α+ 0 = α
5. For all α ∈R a unique element −α, such that holds α+ (−α) = 0
6. For all α,β ∈R holds α∗β ∈R
7. For all α,β ∈R holds α∗β = β ∗α (commutativity)
8. For all α,β,γ ∈R holds α∗ (β ∗γ) = (α∗β)∗γ (associativity)
9. It exist a unique element 1, called one, such that for all α ∈R holds α∗1 = α
10. For all non-zero α ∈R a unique element α−1, such that holds α∗α−1 = 1
11. For all α,β,γ ∈R holds α∗ (β+γ) = α∗β+α∗γ (distributivity)

The elements of R are also called scalars.

42.2.2 Examples

It can easily be proven that real numbers with the well known addition and multiplication
(IR,+,∗) are a field. The same holds for complex numbers with the addition and multipli-
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cation. Actually, there are not many more sets with two operations which fulfill all of these
conditions.

For statistics, only the real and complex numbers with the addition and multiplication are
important.

42.3 Vector spaces

42.3.1 Definition

A set V with two operations + and ∗ on its elements is called a vector space over R, if the
following conditions hold:

1. For all x,y ∈ V holds x+y ∈ V
2. For all x,y ∈ V holds x+y = y+x (commutativity)
3. For all x,y,z ∈ V holds x+ (y+z) = (x+y) +z (associativity)
4. It exist a unique element O, called origin, such that for all x ∈ V holds x+O = x
5. For all x ∈ V exists a unique element −v, such that holds x+ (−x) = O
6. For all α ∈R and x ∈ V holds α∗x ∈ V
7. For all α,β ∈R and x ∈ V holds α∗ (β ∗x) = (α∗β)∗x (associativity)
8. For all x ∈ V and 1 ∈R holds 1∗x= x
9. For all α ∈ R and for all x,y ∈ V holds α ∗ (x+ y) = α ∗x+α ∗ y (distributivity wrt.

vector addition)
10. For all α,β ∈ R and for all x ∈ V holds (α+β) ∗x = α ∗x+β ∗x (distributivity wrt.

scalar addition)

Note that we used the same symbols + and ∗ for different operations in R and V . The
elements of V are also called vectors.

Examples:

1. The set IRp with the real-valued vectors (x1, ...,xp) with elementwise addition x+y=
(x1 +y1, ...,xp+yp) and the elementwise multiplication α∗x= (αx1, ...,αxp) is a vector
space over IR.

2. The set of polynomials of degree p, P (x) = b0 + b1x+ b2x
2 + ...+ bpx

p, with usual
addition and multiplication is a vector space over IR.

42.3.2 Linear combinations

A vector x can be written as a linear combination of vectors x1, ...xn, if

x=
∑n
i=1αixi

with αi ∈R.

Examples:

• (1,2,3) is a linear combination of (1,0,0), (0,1,0), (0,0,1) since (1,2,3) = 1∗ (1,0,0)+2∗
(0,1,0) + 3∗ (0,0,1)
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• 1 + 2∗x+ 3∗x2 is a linear combination of 1 +x+x2, x+x2, x2 since 1 + 2∗x+ 3∗x2 =
1∗ (1 +x+x2) + 1∗ (x+x2) + 1∗ (x2)

42.3.3 Basis of a vector space

A set of vectors x1, ...,xn is called a basis of the vector space V , if

1. for each vector xinV exist scalars α1, ...,αn ∈ R such that x =
∑
iαixi 2. there is no

subset of {x1, ...,xn} such that 1. is fulfilled.

Note, that a vector space can have several bases.

Examples:

• Each vector (α1,α2,α3) ∈ IR3 can be written as α1 ∗ (1,0,0)+α2 ∗ (0,1,0)+α3 ∗ (0,0,1).
Therefore is {(1,0,0),(0,1,0),(0,0,1)} a basis of IR3.

• Each polynomial of degree p can be written as linear combination of {1,x,x2, ...,xp} and
therefore forms a basis for this vector space.

Actually, for both examples we would have to prove condition 2., but it is clear that it
holds.

42.3.4 Dimension of a vector space

A dimension of a vector space is the number of vectors which are necessary for a basis. A
vector space has infinitely many number of basis, but the dimension is uniquely determined.
Note that the vector space may have a dimension of infinity, e.g. consider the space of
continuous functions.

Examples:

• The dimension of IR3 is three, the dimension of IRp is p .

• The dimension of the polynomials of degree p is p+ 1.

42.3.5 Scalar products

A mapping < ., . >: V × V → R is called a scalar product if the following holds for all
x,x1,x2,y,y1,y2 ∈ V and α1,α2inR :

1. < α1x1 +α2x2,y >= α1 < x1,y >+α2 < x2,y >
2. < x,α1y1 +α2y2 >= α1 < x,y1 >+α2 < x,y2 >
3. < x,y >=< y,x > with α+ ıβ = α− ıβ
4. < x,x >≥ 0 with < x,x >= 0⇔ x= O

Examples:

• The typical scalar product in IRp is < x,y >=
∑
ixiyi.

• <f,g >=
∫ b
a f(x)∗g(x)dx is a scalar product on the vector space of polynomials of degree

p.
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42.3.6 Norm

A norm of a vector is a mapping ‖.‖ : V →R, if holds

1. ‖x‖ ≥ 0 for all x ∈ V and ‖x‖= 0⇔ x= O (positive definiteness)
2. ‖αv‖=| α | ‖x‖ for all x ∈ V and all α ∈R
3. ‖x+y‖ ≤ ‖x‖+‖y‖ for all x,y ∈ V (triangle inequality)

Examples:

• The Lq norm of a vector in IRp is defined as ‖q = q

√∑p
i=1x

q
i .

• Each scalar product generates a norm by ‖=√< x,x >, therefore ‖=
√∫ b

a f
2(x)dx is a

norm for the polynomials of degree p.

42.3.7 Orthogonality

Two vectors x and y are orthogonal to each other if < x,y >= 0. In IRp it holds that the
cosine of the angle between two vectors can expressed as

cos(∠(x,y)) = <x,y>
‖‖ .

If the angle between x and y is ninety degree (orthogonal) then the cosine is zero and it
follows that < x,y >= 0.

A set of vectors x1, ...,xp is called orthonormal, if

< xi,xj >=
{

0 if i 6= j

1 if i= j
.

If we consider a basis e1, ...,ep of a vector space then we would like to have a orthonormal
basis. Why ?

Since we have a basis, each vector x and y can be expressed by x = α1e1 + ...+αpep and
y = β1e1 + ...+βpep. Therefore the scalar product of x and y reduces to

< x,y > =< α1e1 + ...+αpep,β1e1 + ...+βpep >
=
∑p
i=1
∑p
j=1αiβj < ei,ej >

=
∑p
i=1αiβi < ei,ei >

= α1β1 + ...+αpβp.

Consequently, the computation of a scalar product is reduced to simple multiplication and
addition if the coefficients are known. Remember that for our polynomials we would have
to solve an integral!

148



Gram-Schmidt orthogonalization

42.4 Gram-Schmidt orthogonalization

42.4.1 Algorithm

The aim of the Gram-Schmidt orthogonalization is to find for a set of vectors x1, ...,xp an
equivalent set of orthonormal vectors o1, ...,op such that any vector which can be expressed
as linear combination of x1, ...,xp can also be expressed as linear combination of o1, ...,op:

1. Set b1 = x1 and o1 = b1/1‖

2. For each i > 1 set bi = xi−
∑i−1
j=1

<xi,bj>
<bj ,bj>

bj and oi = bi/i‖, in each step the vector xi is
projected on bj and the result is subtracted from xi.

Figure 18

42.4.2 Example

Consider the polynomials of degree two in the interval[−1,1] with the scalar product <
f,g >=

∫ 1
−1 f(x)g(x)dx and the norm ‖=

√
< f,f >. We know that f1(x) = 1,f2(x) = x and

f3(x) = x2 are a basis for this vector space. Let us now construct an orthonormal basis:

Step 1a: b1(x) = f1(x) = 1
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Step 1b: o1(x) = b1(x)
1(x)‖ = 1√

<b1(x),b1(x)>
= 1√∫ 1

−1 1dx
= 1√

2

Step 2a: b2(x) = f2(x)− <f2(x),b1(x)>
<b1(x),b1(x)> b1(x) = x−

∫ 1
−1 x 1dx

2 1 = x− 0
21 = x

Step 2b: o2(x) = b2(x)
2(x)‖ = x√

<b2(x),b2(x)>
= x√∫ 1

−1 x
2dx

= x√
2/3

= x
√

3/2

Step 3a: b3(x) = f3(x) − <f3(x),b1(x)>
<b1(x),b1(x)> b1(x) − <f3(x),b2(x)>

<b2(x),b2(x)> b2(x) = x2 −
∫ 1

−1 x
21 dx

2 1 −∫ 1
−1 x

2x dx

2/3 x= x2− 2/3
2 1− 0

2/3x= x2−1/3

Step 3b: o3(x) = b3(x)
3(x)‖ = x2−1/3√

<b3(x),b3(x)>
= x2−1/3√∫ 1

−1(x2−1/3)2dx
= x2−1/3√∫ 1

−1 x
4−2/3x2+1/9 dx

= x2−1/3√
8/45

=√
5
8(3x2−1)

It can be proven that 1/
√

2,x
√

3/2 and
√

5
8(3x2− 1) form a orthonormal basis with the

above scalarproduct and norm.

42.4.3 Numerical instability

Consider the vectors x1 = (1, ε,0,0),x2 = (1,0, ε,0) and x3 = (1,0,0, ε). As-
sume that ε is so small that computing 1 + ε = 1 holds on a computer (see
http://en.wikipedia.org/wiki/Machine_epsilon).1 Let compute a orthonormal ba-
sis for this vectors in IR4 with the standard scalar product < x,y >= x1y1 +x2y2 +x3y3 +
x4y4 and the norm ‖=

√
x2

1 +x2
2 +x2

3 +x2
4.

Step 1a. b1 = x1 = (1, ε,0,0)

Step 1b. o1 = b1
1‖ = b1√

1+ε2 = b1 with 1 + ε2 = 1

Step 2a. b2 = x2− <x2,b1>
<b1,b1>

b1 = (1,0, ε,0)− 1
1+ε2 (1, ε,0,0) = (0,−ε,ε,0)

Step 2b. o2 = b2
2‖ = b2√

2ε2
= (0,− 1√

2 ,
1√
2 ,0)

Step 3a. b3 = x3 − <x3,b1>
<b1,b1>

b1 − <x3,b2>
<b2,b2>

b2 = (1,0,0, ε)− 1
1+ε2 (1, ε,0,0)− 0

2ε2 (0,−ε,ε,0) =
(0,−ε,0, ε)

Step 3b. o3 = b3
3‖ = b3√

2ε2
= (0,− 1√

2 ,0,
1√
2)

It obvious that for the vectors

- o1 = (1, ε,0,0)

- o2 = (0,− 1√
2 ,

1√
2 ,0)

- o3 = (0,− 1√
2 ,0,

1√
2)

1 http://en.wikipedia.org/wiki/Machine_epsilon).
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the scalarproduct < o2,o3 >= 1/2 6= 0. All other pairs are also not zero, but they are
multiplied with ε such that we get a result near zero.

42.4.4 Modified Gram-Schmidt

To solve the problem a modified Gram-Schmidt algorithm is used:

1. Set bi = xi for all i
2. for each i from 1 to n compute

a) oi = bi

i‖
b) for each j from i+ 1 to n compute bj = bj−< bj ,oi > oi

The difference is that we compute first our new bi and subtract it from all other bj . We
apply the wrongly computed vector to all vectors instead of computing each bi separately.

42.4.5 Example (recomputed)

Step 1. b1 = (1, ε,0,0), b2 = (1,0, ε,0), b3 = (1,0,0, ε)

Step 2a. o1 = b1
1‖ = b1√

1+ε2 = b1 = (1, ε,0,0) with 1 + ε2 = 1

Step 2b. b2 = b2−< b2,o1 > o1 = (1,0, ε,0)− (1, ε,0,0) = (0,−ε,ε,0)

Step 2c. b3 = b3−< b3,o1 > o1 = (1,0,0, ε)− (1, ε,0,0) = (0,−ε,0, ε)

Step 3a. o2 = b2
2‖ = b2√

2ε2
= (0,− 1√

2 ,
1√
2 ,0)

Step 3b. b3 = b3−< b3,o2 > o2 = (0,−ε,0, ε)− ε√
2(0,− 1√

2 ,
1√
2 ,0) = (0,−ε/2,−ε/2, ε)

Step 4a. o3 = b3
3‖ = b3√

3/2ε2
= (0,− 1√

6 ,−
1√
6 ,

2√
6)

We can easily verify that < o2,o3 >= 0.

42.5 Application

42.5.1 Exploratory Project Pursuit

In the analysis of high-dimensional data we usually analyze projections of the data. The
approach results from the Theorem of Cramer-Wold that states that the multidimensional
distribution is fixed if we know all one-dimensional projections. Another theorem states
that most (one-dimensional) projections of multivariate data are looking normal, even if
the multivariate distribution of the data is highly non-normal.

Therefore in Exploratory Projection Pursuit we jugde the interestingness of a projection by
comparison with a (standard) normal distribution. If we assume that the one-dimensional
data x are standard normal distributed then after the transformation z = 2Φ−1(x)−1 with
Φ(x) the cumulative distribution function of the standard normal distribution then z is
uniformly distributed in the interval [−1;1].
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Thus the interesting can measured by
∫ 1
−1(f(z)− 1/2)2dx with f(z) a density estimated

from the data. If the density f(z) is equal to 1/2<math > intheinterval <math > [−1;1]
then the integral becomes zero and we have found that our projected data are normally
distributed. An value larger than zero indicates a deviation from the normal distribution
of the projected data and hopefully an interesting distribution.

42.5.2 Expansion with orthonormal polynomials

Let Li(z) a set of orthonormal polynomials with the scalar product <f,g >=
∫ 1
−1 f(z)g(z)dz

and the norm ‖ =
√
< f,f >. What can we derive about a densities f(z) in the interval

[−1;1] ?

If f(z) =
∑I
i=0aiLi(z) for some maximal degree I then it holds∫ 1

−1 f(z)Lj(z)dz =
∫ 1
−1
∑I
i=0aiLi(z)Lj(z)dz = aj

∫ 1
−1Lj(z)Lj(z)dz = aj

We can also write
∫ 1
−1 f(z)Lj(z)dz = E(Lj(z)) or empirically we get an estimator âj =

1
n

∑n
k=1Lj(zk).

We describe the term 1/2 =
∑I
i=1 biLi(z) and get for our integral∫ 1

−1(f(z) − 1/2)2dz =
∫ 1
−1

(∑I
i=0(ai− bi)Li(z)

)2
dz =

∑I
i,j=0

∫ 1
−1(ai − bi)(aj −

bj)Li(z)Lj(z)dz =
∑I
i=0(ai− bi)2.

So using a orthonormal function set allows us to reduce the integral to a summation of
coefficient which can be estimated from the data by plugging âj in the formula above. The
coefficients bi can be precomputed in advance.

42.5.3 Normalized Legendre polynomials

The only problem left is to find the set of orthonormal polynomials Li(z) upto degree I. We
know that 1,x,x2, ...,xI form a basis for this space. We have to apply the Gram-Schmidt
orthogonalization to find the orthonormal polynomials. This has been started in the first
example2.

The resulting polynomials are called normalized Legendre polynomials. Up to a sacling
factor the normalized Legendre polynomials are identical to Legendre polynomials3.
The Legendre polynomials have a recursive expression of the form

Li(z) = (2i−1)Li−1(z)−(i−1)Li−2(z)
i

So computing our integral reduces to computing L0(zk) and L1(zk) and using the recursive
relationship to compute the âj ’s. Please note that the recursion can be numerically unstable!

2 http://en.wikibooks.org/wiki/Statistics:Numerical_Methods/Basic_Linear_Algebra_and_
Gram-Schmidt_Orthogonalization#Example

3 http://en.wikipedia.org/wiki/Legendre_polynomials
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43 Unconstrained Optimization

43.1 Introduction

In the following we will provide some notes on numerical optimization algorithms. As there
are numerous methods1 out there, we will restrict ourselves to the so-called Gradient
Methods. There are basically two arguments why we consider this class as a natural starting
point when thinking about numerical optimization algorithms. On the one hand, these
methods are really workhorses in the field, so their frequent use in practice justifies their
coverage here. On the other hand, this approach is highly intuitive in the sense that it
somewhat follow naturally from the well-known properties of optima2. In particular
we will concentrate on three examples of this class: the Newtonian Method, the Method
of Steepest Descent and the class of Variable Metric Methods, nesting amongst others the
Quasi Newtonian Method.

Before we start we will nevertheless stress that there does not seem to be a "one and only"
algorithm but the performance of specific algorithms is always contingent on the specific
problem to be solved. Therefore both experience and "trial-and-error" are very important
in applied work. To clarify this point we will provide a couple of applications where the
performance of different algorithms can be compared graphically. Furthermore a specific
example on Maximum Likelihood Estimation3 can be found at the end. Especially for
statisticians and econometricians4 the Maximum Likelihood Estimator is probably the
most important example of having to rely on numerical optimization algorithms in practice.

43.2 Theoretical Motivation

Any numerical optimization algorithm has solve the problem of finding "observable" prop-
erties of the function such that the computer program knows that a solution is reached. As
we are dealing with problems of optimization two well-known results seem to be sensible
starting points for such properties.

If f is differentiable and x? is a (local) minimum, then

(1a) Df(x?) = 0

i.e. the Jacobian Df(x) is equal to zero

and

1 http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
2 http://en.wikipedia.org/wiki/Stationary_point
3 http://en.wikipedia.org/wiki/Maximum_likelihood
4 http://en.wikipedia.org/wiki/Econometrics
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If f is twice differentiable and x? is a (local) minimum, then

(1b) xTD2f(x?)x≥ 0

i.e. the Hessian D2f(x) is pos. semidefinite5.

In the following we will always denote the minimum by x?. Although these two conditions
seem to represent statements that help in finding the optimum x?, there is the little catch
that they give the implications of x? being an optimum for the function f . But for our
purposes we would need the opposite implication, i.e. finally we want to arrive at a state-
ment of the form: "If some condition g(f(x?)) is true, then x? is a minimum". But the two
conditions above are clearly not sufficient in achieving this (consider for example the case
of f(x) = x3, with Df(0) = D2f(0) = 0 but x? 6= 0). Hence we have to look at an entire
neighborhood of x? as laid out in the following sufficient condition for detecting optima:

If Df(x?) = 0 and xTD2f(z)x≥ 0,∀x ∈ Rn and z ∈ B(x?, δ), then: x? is a local minimum.

Proof: For x ∈ B(x?, δ) let z = x?+ t(x−x?) ∈ B. The Taylor approximation6 yields:
f(x)−f(x?) = 0+ 1

2(x−x?)TD2f(z)(x−x?)≥ 0, where B(x?, δ) denotes an open ball around
x?, i.e. B(x?, δ) = {x : ||x−x?|| ≤ δ} for δ > 0.

In contrast to the two conditions above, this condition is sufficient for detecting optima -
consider the two trivial examples

f(x) = x3 with Df(x? = 0) = 0 but xTD2f(z)x= 6zx2 6≥ 0 (e.g. z =− δ
2)

and

f(x) = x4 with Df(x? = 0) = 0 and xTD2f(z)x= 12z2x2 ≥ 0 ∀z.

Keeping this little caveat in mind we can now turn to the numerical optimization procedures.

43.3 Numerical Solutions

All the following algorithms will rely on the following assumption:

(A1) The set N(f,f(x(0)) = {x ∈ Rn|f(x)≤ f(x(0))} is compact7

where x(0) is some given starting value for the algorithm. The significance of this assumption
has to be seen in the Weierstrass Theorem which states that every compact set contains its
supremum8 and its infimum9. So (A1) ensures that there is some solution in N(f,f(x(0)).
And at this global minimum x? it of course holds true that D(f(x?)) = 0. So - keeping the
discussion above in mind - the optimization problem basically boils down to the question
of solving set of equations D(f(x?)) = 0.

5 http://en.wikipedia.org/wiki/Positive-definite_matrix
6 http://en.wikipedia.org/wiki/Taylor%27s_theorem
7 http://en.wikipedia.org/wiki/Compact_space
8 http://en.wikipedia.org/wiki/Supremum
9 http://en.wikipedia.org/wiki/Infimum
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43.3.1 The Direction of Descent

The problems with this approach are of course rather generically as D(f(x?)) = 0 does
hold true for maxima and saddle points10 as well. Hence, good algorithms should
ensure that both maxima and saddle points are ruled out as potential solutions. Maxima
can be ruled out very easily by requiring f(x(k+1))< f(x(k)) i.e. we restrict ourselves to a
sequence11 {x(k)}k such that the function value decreases in every step. The question is
of course if this is always possible. Fortunately it is. The basic insight why this is the case
is the following. When constructing the mapping x(k+1) = ϕ(x(k)) (i.e. the rule how we get
from x(k) to x(k+1)) we have two degrees of freedoms, namely

• the direction d(k) and

• the step length σ(k).

Hence we can choose in which direction we want to move to arrive at x(k+1) and how far
this movement has to be. So if we choose d(k) and σ(k) in the "right way" we can effectively
ensure that the function value decreases. The formal representation of this reasoning is
provided in the following

Lemma: If d(k) ∈ Rn and Df(x)Td(k) < 0 then: ∃σ̄ > 0 such that

f(x+σ(k)d(k))< f(x) ∀σ ∈ (0, σ̄)

Proof: As Df(x)Td(k) < 0 and Df(x)Td(k) = limσ→0
f(x+σ(k)d(k))−f(x)

σ(k) , it follows that f(x+
σ(k)d(k))< f(x) for σ(k) small enough.

43.3.2 The General Procedure of Descending Methods

A direction vector d(k) that satisfies this condition is is called a Direction of Descent. In
practice this Lemma allows us to use the following procedure to numerically solve optimiza-
tion problems.

1. Define the sequence12 {x(k)}k recursively via x(k+1) = x(k) +σ(k)d(k)

2. Choose the direction d(k) from local information at the point x(k)

3. Choose a step size σ(k) that ensures convergence13 of the algorithm.

4. Stop the iteration if |f(x(k+1))−f(x(k))|< ε where ε > 0 is some chosen tolerance value
for the minimum

This procedure already hints that the choice of d(k) and σ(k) are not separable, but rather
dependent. Especially note that even if the method is a descending method (i.e. both
d(k) and σ(k) are chosen according to Lemma 1) the convergence to the minimum is not
guaranteed. At a first glance this may seem a bit puzzling. If we found a sequence {x(k)}k
such that the function value decreases at every step, one might think that at some stage,

10 http://en.wikipedia.org/wiki/Stationary_point
11 http://en.wikipedia.org/wiki/Sequence
12 http://en.wikipedia.org/wiki/Sequence
13 http://en.wikipedia.org/wiki/Convergent_series
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i.e. in the limit of k tending to infinity we should reach the solution. Why this is not the
case can be seen from the following example borrowed from W. Alt (2002, p. 76).

Example 1

• Consider the following example which does not converge although it is clearly descending.
Let the criterion function be given by

f(x) = x2, let the starting value be x(0) = 1, consider a (constant) direction vector d(k) =−1
and choose a step width of σ(k) = (1

2)k+2. Hence the recursive definition of the sequence14

{x(k)}k follows as

(2) x(k+1) = x(k) + (1
2)k+2(−1) = x(k−1)− (1

2)k+1− (1
2)k+2 = x(0)−

∑k
j=0(1

2)j+2.

Note that x(k) > 0 ∀ k and hence f(x(k+1)) < f(x(k)) ∀ k, so that it is clearly a descending
method. Nevertheless we find that

(3) limk→∞x
(k) = limk→∞x

(0) −
∑k−1
j=0(1

2)j+2 = limk→∞1 − 1
4(1−( 1

2 )k

1
2

) = limk→∞
1
2 +

(1
2)k+1 = 1

2 6= 0 = x?.

The reason for this non-convergence has to be seen in the stepsize σ(k) decreasing too fast.
For large k the steps x(k+1)−x(k) get so small that convergence is precluded. Hence we
have to link the stepsize to the direction of descend d(k).

43.3.3 Efficient Stepsizes

The obvious idea of such a linkage is to require that the actual descent is proportional to a
first order approximation, i.e. to choose σ(k) such that there is a constant c1 > 0 such that

(4) f(x(k) +σ(k)d(k))−f(x(k))≤ c1σ
(k)D(f(x(k)))d(k) < 0.

Note that we still look only at descending directions, so that Df(x(k))Td(k) < 0 as required
in Lemma 1 above. Hence, the compactness of N(f,f(x(k))) implies the convergence15

of the LHS and by (4)

(5) limk→∞σ
(k)D(f(x(k)))d(k) = 0.

Finally we want to choose a sequence {x(k)}k such that limk→∞D(f(x(k))) = 0 because that
is exactly the necessary first order condition we want to solve. Under which conditions does
(5) in fact imply limk→∞D(f(x(k))) = 0? First of all the stepsize σ(k) must not go to zero
too quickly. That is exactly the case we had in the example above. Hence it seems sensible
to bound the stepsize from below by requiring that

(6) σ(k) ≥−c2
Df(x(k))T d(k)

||d(k)||2 > 0

for some constant c2 > 0. Substituting (6) into (5) finally yields

(7) f(x(k) +σ(k)d(k))−f(x(k))≤−c(Df(x(k))T d(k)

||d(k)|| )2, c= c1c2

14 http://en.wikipedia.org/wiki/Sequence
15 http://en.wikipedia.org/wiki/Convergent_series
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where again the compactness16 of N(f,f(x(k))) ensures the convergence17 of the LHS
and hence

(8) limk→∞− c(Df(x(k))T d(k)

||d(k)|| )2 = limk→∞
Df(x(k))T d(k)

||d(k)|| = 0

Stepsizes that satisfy (4) and (6) are called efficient stepsizes and will be denoted by σ(k)
E .

The importance of condition (6) is illustated in the following continuation of Example 1.

Example 1 (continued)

• Note that it is exactly the failure of (6) that induced Exmaple 1 not to converge. Sub-
stituting the stepsize of the example into (6) yields

(6.1) σ(k) = (1
2)(k+2) ≥−c2

2x(k)(−1)
1 = c2 ·2(1

2 + (1
2)k+1)⇔ 1

4(1+2(k)) ≥ c2 > 0

so there is no constant c2 > 0 satisfying this inequality for all k as required in (6). Hence
the stepsize is not bounded from below and decreases too fast. To really acknowledge the
importance of (6), let us change the example a bit and assume that σ(k) = (1

2)k+1. Then we
find that

(6.2) limk→∞x
(k+1) = limk→∞x

(0)− 1
2
∑
i(1

2)i = limk→∞(1
2)k+1 = 0 = x?,

i.e. convergence18 actually does take place. Furthermore recognize that this example
actually does satisfy condition (6) as

(6.3) σ(k) = (1
2)(k+1) ≥−c2

2x(k)(−1)
1 = c2 ·2(1

2)k⇔ 1
4 ≥ c2 > 0.

43.3.4 Choosing the Direction d

We have already argued that the choice of σ(k) and d(k) is intertwined. Hence the choice of
the "right" d(k) is always contingent on the respective stepsize σ(k). So what does "right"
mean in this context? Above we showed in equation (8) that choosing an efficient stepsize
implied

(8′) limk→∞− c(Df(x(k))T d(k)

||d(k)|| )2 = limk→∞
Df(x(k))T d(k)

||d(k)|| = 0.

The "right" direction vector will therefore guarantee that (8’) implies that

(9) limk→∞Df(x(k)) = 0

as (9) is the condition for the chosen sequence {x(k)}k to converge. So let us explore what
directions could be chosen to yield (9). Assume that the stepsize σk is efficient and define

(10) β(k) = Df(x(k))T d(k)

||Df(x(k))||||d(k)|| ⇔ β(k)||Df(x(k))||= Df(x(k))T d(k)

||d(k)||

By (8’) and (10) we know that

(11) limk→∞β
(k)||Df(x(k))||= 0.

16 http://en.wikipedia.org/wiki/Compact_space
17 http://en.wikipedia.org/wiki/Convergent_series
18 http://en.wikipedia.org/wiki/Convergent_series
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So if we bound β(k) from below (i.e. β(k) ≤−δ < 0), (11) implies that

(12) limk→∞β
(k)||Df(x(k))||= limk→∞||Df(x(k))||= limk→∞Df(x(k)) = 0,

where (12) gives just the condition of the sequence {x(k)}k converging to the solution x?. As
(10) defines the direction vector d(k) implicitly by β(k), the requirements on β(k) translate
directly into requirements on d(k).

43.3.5 Why Gradient Methods?

When considering the conditions on β(k) it is clear where the term Gradient Methods orig-
inates from. With β(k) given by

βk = D(f(x))d(k)

||Df(x(k))||||d(k)|| = cos(Df(x(k)),d(k))

we have the following result

Given that σ(k) was chosen efficiently and d(k) satisfies

(13) cos(Df(x(k)),d(k)) = βk ≤−δ < 0

we have

(14) limk→∞Df(x(k))→ 0

Hence: Convergence takes place if the angle between the negative gradient at x(k) and the
direction d(k) is consistently smaller than the right angle. Methods relying on d(k) satisfying
(13) are called Gradient Methods.

In other words: As long as one is not moving orthogonal19 to the gradient and if the
stepsize is chosen efficiently, Gradient Methods guarantee convergence to the solution x?.

43.3.6 Some Specific Algorithms in the Class of Gradient Methods

Let us now explore three specific algorithms of this class that differ in their respective choice
of d(k).

The Newtonian Method

The Newtonian Method20 is by far the most popular method in the field. It is a well known
method to solve for the roots21 of all types of equations and hence can be easily applied
to optimization problems as well. The main idea of the Newtonian method is to linearize
the system of equations to arrive at

(15) g(x) = g(x̂) +Dg(x̂)T (x− x̂) = 0.

19 http://en.wikipedia.org/wiki/Orthogonal
20 http://en.wikipedia.org/wiki/Newton_method
21 http://en.wikipedia.org/wiki/Root_%28mathematics%29
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(15) can easily be solved for x as the solution is just given by (assuming Dg(x̂)T to be
non-singular22)

(16) x= x̂− [Dg(x̂)T ]−1g(x̂).

For our purposes we just choose g(x) to be the gradient Df(x) and arrive at

(17) d
(k)
N = x(k+1)−x(k) =−[D2f(x(k))]−1Df(x(k))

where d(k)
N is the so-called Newtonian Direction.

Properties of the Newtonian Method

Analyzing (17) elicits the main properties of the Newtonian method:

• If D2f(x(k)) is positive definite23, dkN is a direction of descent in the sense of Lemma
1.

• The Newtonian Method uses local information of the first and second derivative to cal-
culate dkN .

• As

(18) x(k+1) = x(k) +d
(k)
N

the Newtonian Method uses a fixed stepsize of σ(k) = 1. Hence the Newtonian method is
not necessarily a descending method in the sense of Lemma 1. The reason is that the fixed
stepsize σ(k) = 1 might be larger than the critical stepsize σ̄k given in Lemma 1. Below
we provide the Rosenbrock function as an example where the Newtonian Method is not
descending.

• The Method can be time-consuming as calculating [D2f(x(k))]−1 for every step k can
be cumbersome. In applied work one could think about approximations. One could for
example update the Hessian only every sth step or one could rely on local approximations.
This is known as the Quasi-Newtonian-Method and will be discussed in the section about
Variable Metric Methods.

• To ensure the method to be decreasing one could use an efficient stepsize σ(k)
E and set

(19) x(k+1) = x(k)−σ(k)
E d

(k)
N = x(k)−σ(k)

E [D2f(xk)]−1Df(x(k))

Method of Steepest Descent

Another frequently used method is the Method of Steepest Descent24. The idea of this
method is to choose the direction d(k) so that the decrease in the function value f is maximal.
Although this procedure seems at a first glance very sensible, it suffers from the fact that
it uses effectively less information than the Newtonian Method by ignoring the Hessian’s

22 http://en.wikipedia.org/wiki/Singular_matrix
23 http://en.wikipedia.org/wiki/Positive-definite_matrix
24 http://en.wikipedia.org/wiki/Steepest_descent
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information about the curvature of the function. Especially in the applications below we
will see a couple of examples of this problem.

The direction vector of the Method of Steepest Descent is given by

(20) d
(k)
SD = argmaxd:||d||=r{−Df(x(k))Td}= argmind:||d||=r{Df(x(k))Td}=−r Df(x)

||Df(x)||

Proof: By the Cauchy-Schwartz Inequality25 it follows that

(21) Df(x)T d
||Df(x)||||d|| ≥−1 ⇔ Df(x)Td≥−r||Df(x)||.

Obviously (21) holds with equality for d(k) = d
(k)
SD given in (20).

Note especially that for r = ||Df(x)|| we have d(k)
SD =−Df(x(k)), i.e. we just "walk" in the

direction of the negative gradient. In contrast to the Newtonian Method the Method of
Steepest Descent does not use a fixed stepsize but chooses an efficient stepsize σ(k)

E . Hence
the Method of Steepest Descent defines the sequence {x(k)}k by

(22) x(k+1) = x(k) +σ
(k)
E d

(k)
SD,

where σ(k)
E is an efficient stepsize and d(k)

SD the Direction of Steepest Descent given in (20).

Properties of the Method of Steepest Descent

• With d(k)
SD =−r Df(x)

||Df(x)|| the Method of Steepest Descent defines a direction of descent in
the sense of Lemma 1, as

Df(x)Td(k)
SD =Df(x)T (−r Df(x)

||Df(x)||) =− r
||Df(x)||Df(x)TDf(x)< 0.

• The Method of Steepest Descent is only locally sensible as it ignores second order infor-
mation.

• Especially when the criterion function is flat (i.e. the solution x? lies in a "valley") the se-
quence defined by the Method of Steepest Descent fluctuates wildly (see the applications
below, especially the example of the Rosenbrock function).

• As it does not need the Hessian, calculation and implementation of theMethod of Steepest
Descent is easy and fast.

Variable Metric Methods

A more general approach than both the Newtonian Method and the Method of Steepest
Descent is the class of Variable Metric Methods. Methods in this class rely on the updating
formula

(23) xk+1 = xk−σ(k)
E [Ak]−1Df(xk).

25 http://en.wikipedia.org/wiki/Cauchy-Schwartz_inequality
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If Ak is a symmetric26 and positive definite27 matrix, (23) defines a descending
method as [Ak]−1 is positive definite if and only if Ak is positive definite as well. To see
this: just consider the spectral decomposition28

(24) Ak = ΓΛΓT

where Γ and Λ are the matrices with eigenvectors29 and eigenvalues30 respectively.
If Ak is positive definite, all eigenvalues λi are strictly positive. Hence their inverse λ−1

i are
positive as well, so that [Ak]−1 = ΓΛ−1ΓT is clearly positive definite. But then, substitution
of d(k) = [Ak]−1Df(xk) yields

(25) Df(xk)Td(k) =−Df(xk)T [Ak]−1Df(xk)≡−vT [Ak]−1v ≤ 0,

i.e. the method is indeed descending. Up to now we have not specified the matrix Ak, but
is easily seen that for two specific choices, the Variable Metric Method just coincides with
the Method of Steepest Descent and the Newtonian Method respectively.

• For Ak = I (with I being the identity matrix31) it follows that

(22′) xk+1 = xk−σ(k)
E Df(xk)

which is just the Method of Steepest Descent.

• For Ak =D2f(xk) it follows that

(19′) xk+1 = xk−σ(k)
E [D2f(xk)]−1Df(xk)

which is just the Newtonian Method using a stepsize σ(k)
E .

The Quasi Newtonian Method
A further natural candidate for a Variable Metric Method is the Quasi Newtonian Method.
In contrast to the standard Newtonian Method it uses an efficient stepsize so that it is a
descending method and in contrast to theMethod of Steepest Descent it does not fully ignore
the local information about the curvature of the function. Hence the Quasi Newtonian
Method is defined by the two requirements on the matrix Ak:

• Ak should approximate the Hessian D2f(xk) to make use of the information about the
curvature and

• the update Ak→Ak+1 should be easy so that the algorithm is still relatively fast (even
in high dimensions).

To ensure the first requirement, Ak+1 should satisfy the so-calledQuasi-Newtonian-Equation

(26) Ak+1(x(k+1)−x(k)) =Df(x(k+1))−Df(x(k))

as all Ak satisfying (26) reflect information about the Hessian. To see this, consider the
function g(x) defined as

26 http://en.wikipedia.org/wiki/Symmetric_matrix
27 http://en.wikipedia.org/wiki/Positive-definite_matrix
28 http://en.wikipedia.org/wiki/Spectral_decomposition
29 http://en.wikipedia.org/wiki/Eigenvectors
30 http://en.wikipedia.org/wiki/Eigenvectors
31 http://en.wikipedia.org/wiki/Identity_matrix
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(27) g(x) = f(xk+1) +Df(xk+1)T (x−xk+1) + 1
2(x−xk+1)TAk+1(x−xk+1).

Then it is obvious that g(xk+1) = f(xk+1) and Dg(xk+1) = Df(xk+1). So g(x) and f(x)
are reasonably similar in the neighborhood of x(k+1). In order to ensure that g(x) is also
a good approximation at x(k), we want to choose Ak+1 such that the gradients at x(k) are
identical. With

(28) Dg(xk) =Df(xk+1)−Ak+1(xk+1−xk)

it is clear that Dg(xk) = Df(xk) if Ak+1 satisfies the Quasi Newtonian Equation given in
(26). But then it follows that

(29) Ak+1(xk+1 − xk) = Df(xk+1)−Dg(xk) = Df(xk+1)−Df(xk) = D2f(λx(k) + (1−
λ)x(k+1))(xk+1−xk).

Hence as long as x(k+1) and x(k) are not too far apart, Ak+1 satisfying (26) is a good
approximation of D2f(x(k)).

Let us now come to the second requirement that the update of the Ak should be easy.
One specific algorithm to do so is the so-called BFGS-Algorithm32. The main merit of
this algorithm is the fact that it uses only the already calculated elements {x(k)}k and
{Df(x(k))}k to construct the update A(k+1). Hence no new entities have to be calculated
but one has only to keep track of the x-sequence and sequence of gradients. As a starting
point for the BFGS-Algorithm one can provide any positive definite matrix (e.g. the identity
matrix or the Hessian at x(0)). The BFGS-Updating-Formula is then given by

(30) Ak =Ak−1− (Ak−1)T γT
k−1γk−1A

k−1

γT
k−1A

k−1γk−1
+ ∆k−1∆T

k−1
∆T

k−1γk−1

where ∆k−1 = Df(x(k))−Df(x(k−1)) and γk−1 = x(k)−x(k−1). Furthermore (30) ensures
that all Ak are positive definite as required by Variable Metric Methods to be descending.

Properties of the Quasi Newtonian Method

• It uses second order information about the curvature of f(x) as the matrices Ak are
related to the Hessian D2f(x).

• Nevertheless it ensures easy and fast updating (e.g. by the BFGS-Algorithm) so that it
is faster than the standard Newtonian Method.

• It is a descending method as Ak are positive definite.

• It is relatively easy to implement as the BFGS-Algorithm is available in most numerical
or statistical software packages.

43.4 Applications

To compare the methods and to illustrate the differences between the algorithms we will
now evaluate the performance of the Steepest Descent Method, the standard Newtonian

32 http://en.wikipedia.org/wiki/BFGS_method
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Method and the Quasi Newtonian Method with an efficient stepsize. We use two classical
functions in this field, namely the Himmelblau and the Rosenbrock function.

43.4.1 Application I: The Himmelblau Function

The Himmelblau function is given by

(31) f(x,y) = (x2 +y−11)2 + (x+y2−7)2

This fourth order polynomial has four minima, four saddle points and one maximum so
there are enough possibilities for the algorithms to fail. In the following pictures we display
the contour plot33 and the 3D plot of the function for different starting values.

In Figure 1 we display the function and the paths of all three methods at a starting value
of (2,−4). Obviously the three methods do not find the same minimum. The reason is
of course the different direction vector of the Method of Steepest Descent - by ignoring
the information about the curvature it chooses a totally different direction than the two
Newtonian Methods (see especially the right panel of Figure 1).

Figure 19: Figure 1: The two Newton Methods converge to the same, the Method of
Steepest Descent to a different minimum.

Consider now the starting value (4.5,−0.5), displayed in Figure 2. The most important
thing is of course that now all methods find different solutions. That the Method of Steep-
est Descent finds a different solution than the two Newtonian Methods is again not that
suprising. But that the two Newtonian Methods converge to different solution shows the
significance of the stepsize σ. With the Quasi-Newtonian Method choosing an efficient step-
size in the first iteration, both methods have different stepsizes and direction vectors for

33 http://en.wikipedia.org/wiki/Contour_line
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all iterations after the first one. And as seen in the picture: the consequence may be quite
significant.

Figure 20: Figure 2: Even all methods find different solutions.

43.4.2 Application II: The Rosenbrock Function

The Rosenbrock function is given by

(32) f(x,y) = 100(y−x2)2 + (1−x)2

Although this function has only one minimum it is an interesting function for optimization
problems. The reason is the very flat valley of this U-shaped function (see the right panels
of Figures 3 and 4). Especially for econometricians34 this function may be interesting
because in the case of Maximum Likelihood estimation flat criterion functions occur quite
frequently. Hence the results displayed in Figures 3 and 4 below seem to be rather generic
for functions sharing this problem.

My experience when working with this function and the algorithms I employed is that
Figure 3 (given a starting value of (2,−5)) seems to be quite characteristic. In contrast
to the Himmelblau function above, all algorithms found the same solution and given that
there is only one minimum this could be expected. More important is the path the different
methods choose as is reflects the different properties of the respective methods. It is seen
that the Method of Steepest Descent fluctuates rather wildly. This is due to the fact that
it does not use information about the curvature but rather jumps back and forth between
the "hills" adjoining the valley. The two Newtonian Methods choose a more direct path as
they use the second order information. The main difference between the two Newtonian

34 http://en.wikipedia.org/wiki/Econometrics
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Methods is of course the stepsize. Figure 3 shows that the Quasi Newtonian Method uses
very small stepsizes when working itself through the valley. In contrast, the stepsize of
the Newtonian Method is fixed so that it jumps directly in the direction of the solution.
Although one might conclude that this is a disadvantage of the Quasi Newtonian Method,
note of course that in general these smaller stepsizes come with benefit of a higher stability,
i.e. the algorithm is less likely to jump to a different solution. This can be seen in Figure 4.

Figure 21: Figure 3: All methods find the same solution, but the Method of Steepest
Descent fluctuates heavily.

Figure 4, which considers a starting value of (−2,−2), shows the main problem of the
Newtonian Method using a fixed stepsize - the method might "overshoot" in that it is not
descending. In the first step, the Newtonian Method (displayed as the purple line in the
figure) jumps out of the valley to only bounce back in the next iteration. In this case
convergence to the minimum still occurs as the gradient at each side points towards the
single valley in the center, but one can easily imagine functions where this is not the case.
The reason of this jump are the second derivatives which are very small so that the step
[Df(x(k))]−1Df(x(k))) gets very large due to the inverse of the Hessian. In my experience
I would therefore recommend to use efficient stepsizes to have more control over the paths
the respective Method chooses.
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Figure 22: Figure 2: Overshooting of the Newtonian Method due to the fixed stepsize.

43.4.3 Application III: Maximum Likelihood Estimation

For econometricians and statisticians the Maximum Likelihood Estimator35 is prob-
ably the most important application of numerical optimization algorithms. Therefore we
will briefly show how the estimation procedure fits in the framework developed above.

As usual let

(33) f(Y |X;θ)

be the conditional density36 of Y given X with parameter θ and

(34) l(θ;Y |X)

the conditional likelihood function37 for the parameter θ

If we assume the data to be independently, identically distributed (iid)38 then the
sample log-likelihood follows as

(35) L(θ;Y1, ...,YN ) =
∑N
i L(θ;Yi) =

∑N
i log(l(θ;Yi)).

Maximum Likelihood estimation therefore boils down to maximize (35) with respect to the
parameter θ. If we for simplicity just decide to use the Newtonian Method to solve that
problem, the sequence {θ(k)}k is recursively defined by

35 http://en.wikipedia.org/wiki/Maximum_likelihood
36 http://en.wikipedia.org/wiki/Conditional_distribution
37 http://en.wikipedia.org/wiki/Likelihood_function
38 http://en.wikipedia.org/wiki/Iid
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(36) DθL(θ(k+1)) = DθL(θ(k)) + DθθL(θ(k))(θ(k+1) − θ(k)) = 0 ⇔ θ(k+1) = θ(k) −
[DθθL(θ(k))]−1DθL(θ(k))

where DθL and DθθL denotes the first and second derivative with respect to the parameter
vector θ and [DθθL(θ(k))]−1DθL(θ(k)) defines the Newtonian Direction given in (17). As
Maximum Likelihood estimation always assumes that the conditional density (i.e. the
distribution of the error term) is known up to the parameter θ, the methods described
above can readily be applied.

A Concrete Example of Maximum Likelihood Estimation

Assume a simple linear model

(37a) Yi = β1 +βxXi+Ui

with θ = (β1,β2)′. The conditional distribution Y is then determined by the one of U, i.e.

(37b) p(Yi−β1−βxXi)≡ p|Xi
(Yi) = p(Ui),

where p denotes the density function39. Generally, there is no closed form solution
of maximizing (35) (at least if U does not happen to be normally distributed40), so
that numerical methods have to be employed. Hence assume that U follows Student’s
t-distribution41 with m degrees of freedom42 so that (35) is given by

(38) L(θ;Y|X) =
∑
log( Γ( m+1

2 )√
πmΓ( m

2 )(1 + (yi−xT
i β)2

m )−
m+1

2 )

where we just used the definition of the density function of the t-distribution. (38) can be
simplified to

(39) L(θ;Y|X) =N [log(Γ(m+1
2 ))− log(

√
πmΓ(m2 ))]− m+1

2
∑
log(1 + (yi−xT

i β)2

m )

so that (if we assume that the degrees of freedom m are known)

(40) argmax{L(θ;Y|X)} = argmax{−m+1
2
∑
log(1 + (yi−xT

i β)2

m )} = argmin{
∑
log(1 +

(yi−xT
i β)2

m )}.

With the criterion function

(41) f(β1,β2) =
∑
log(1 + (yi−β1−β2xi)2

m )

the methods above can readily applied to calculate the Maximum Likelihood Estimator
(β̂1,ML, β̂2,ML) maximizing (41).
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• Alt, W. (2002): "Nichtlineare Optimierung", Vieweg: Braunschweig/Wiesbaden

39 http://en.wikipedia.org/wiki/Density_function
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41 http://en.wikipedia.org/wiki/Student%27s_t-distribution
42 http://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29
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44 Quantile Regression

Quantile Regression as introduced by Koenker and Bassett (1978) seeks to complement
classical linear regression analysis. Central hereby is the extension of "ordinary quantiles
from a location model to a more general class of linear models in which the conditional
quantiles have a linear form" (Buchinsky (1998), p. 89). In Ordinary Least Squares (OLS1)
the primary goal is to determine the conditional mean of random variable Y , given some
explanatory variable xi, reaching the expected value E[Y |xi]. Quantile Regression goes
beyond this and enables one to pose such a question at any quantile of the conditional
distribution function. The following seeks to introduce the reader to the ideas behind
Quantile Regression. First, the issue of quantiles2 is addressed, followed by a brief outline
of least squares estimators focusing on Ordinary Least Squares. Finally, Quantile Regression
is presented, along with an example utilizing the Boston Housing data set.

44.1 Preparing the Grounds for Quantile Regression

44.1.1 What are Quantiles

Gilchrist (2001, p.1) describes a quantile as "simply the value that corresponds to a specified
proportion of an (ordered) sample of a population". For instance a very commonly used
quantile is the median3 M , which is equal to a proportion of 0.5 of the ordered data. This
corresponds to a quantile with a probability of 0.5 of occurrence. Quantiles hereby mark
the boundaries of equally sized, consecutive subsets. (Gilchrist, 2001)

More formally stated, let Y be a continuous random variable with a distribution function
FY (y) such that

(1)FY (y) = P (Y ≤ y) = τ

which states that for the distribution function FY (y) one can determine for a given value y
the probability τ of occurrence. Now if one is dealing with quantiles, one wants to do the
opposite, that is one wants to determine for a given probability τ of the sample data set
the corresponding value y. A τ th−quantile refers in a sample data to the probability τ for
a value y.

(2)FY (yτ ) = τ

Another form of expressing the τ th−quantile mathematically is following:

(3)yτ = F−1
Y (τ)

1 http://en.wikipedia.org/wiki/OLS
2 http://en.wikipedia.org/wiki/quantiles
3 http://en.wikipedia.org/wiki/median
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yτ is such that it constitutes the inverse of the function FY (τ) for a probability τ .

Note that there are two possible scenarios. On the one hand, if the distribution function
FY (y) is monotonically increasing, quantiles are well defined for every τ ∈ (0;1). However,
if a distribution function FY (y) is not strictly monotonically increasing , there are some τs
for which a unique quantile can not be defined. In this case one uses the smallest value that
y can take on for a given probability τ .

Both cases, with and without a strictly monotonically increasing function, can be described
as follows:

(4)yτ = F−1
Y (τ) = inf {y|FY (y)≥ τ}

That is yτ is equal to the inverse of the function FY (τ) which in turn is equal to the infimum
of y such that the distribution function FY (y) is greater or equal to a given probability τ ,
i.e. the τ th−quantile. (Handl (2000))

However, a problem that frequently occurs is that an empirical distribution function is
a step function. Handl (2000) describes a solution to this problem. As a first step, one
reformulates equation 4 in such a way that one replaces the continuous random variable
Y with n, the observations, in the distribution function FY (y), resulting in the empirical
distribution function Fn(y). This gives the following equation:

(5)ŷτ = inf {y|Fn(y)≥ τ}

The empirical distribution function can be separated into equally sized, consecutive subsets
via the the number of observations n. Which then leads one to the following step:

(6)ŷτ = y(i)

with i = 1, ...,n and y(1), ...,y(n) as the sorted observations. Hereby, of course, the range
of values that yτ can take on is limited simply by the observations y(i) and their nature.
However, what if one wants to implement a different subset, i.e. different quantiles but
those that can be derived from the number of observations n?

Therefore a further step necessary to solving the problem of a step function is to smooth
the empirical distribution function through replacing it a with continuous linear function
F̃ (y). In order to do this there are several algorithms available which are well described in
Handl (2000) and more in detail with an evaluation of the different algorithms and their
efficiency in computer packages in Hyndman and Fan (1996). Only then one can apply any
division into quantiles of the data set as suitable for the purpose of the analysis. (Handl
(2000))

44.1.2 Ordinary Least Squares

In regression analysis the researcher is interested in analyzing the behavior of a dependent
variable yi given the information contained in a set of explanatory variables xi. Ordinary
Least Squares is a standard approach to specify a linear regression model and estimate its
unknown parameters by minimizing the sum of squared errors. This leads to an approxi-
mation of the mean function of the conditional distribution of the dependent variable. OLS
achieves the property of BLUE, it is the best, linear, and unbiased estimator, if following
four assumptions hold:
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1. The explanatory variable xi is non-stochastic

2. The expectations of the error term εi are zero, i.e. E[εi] = 0

3. Homoscedasticity - the variance of the error terms εi is constant, i.e. var(εi) = σ2

4. No autocorrelation, i.e. cov(εi, εj) = 0 , i 6= j

However, frequently one or more of these assumptions are violated, resulting in that OLS
is not anymore the best, linear, unbiased estimator. Hereby Quantile Regression can tackle
following issues: (i), frequently the error terms are not necessarily constant across a dis-
tribution thereby violating the axiom of homoscedasticity. (ii) by focusing on the mean as
a measure of location, information about the tails of a distribution are lost. (iii) OLS is
sensitive to extreme outliers that can distort the results significantly. (Montenegro (2001))

44.2 Quantile Regression

44.2.1 The Method

Quantile Regression essentially transforms a conditional distribution function into a condi-
tional quantile function by slicing it into segments. These segments describe the cumulative
distribution of a conditional dependent variable Y given the explanatory variable xi with
the use of quantiles as defined in equation 4.

For a dependent variable Y given the explanatory variable X = x and fixed τ , 0 < τ < 1,
the conditional quantile function is defined as the τ − th quantile QY |X(τ |x) of the condi-
tional distribution function FY |X(y|x). For the estimation of the location of the conditional
distribution function, the conditional median QY |X(0,5|x) can be used as an alternative to
the conditional mean. (Lee (2005))

One can nicely illustrate Quantile Regression when comparing it with OLS. In OLS, mod-
eling a conditional distribution function of a random sample (y1, ...,yn) with a parametric
function µ(xi,β) where xi represents the independent variables, β the corresponding esti-
mates and µ the conditional mean, one gets following minimization problem:

(7)minβ∈<
∑n
i=1(yi−µ(xi,β))2

One thereby obtains the conditional expectation function E[Y |xi]. Now, in a similar fashion
one can proceed in Quantile Regression. Central feature thereby becomes ρτ , which serves
as a check function.

(8)ρτ (x) =
{
τ ∗x if x≥ 0
(τ −1)∗x if x < 0

This check-function ensures that

1. all ρτ are positive

2. the scale is according to the probability τ

Such a function with two supports is a must if dealing with L1 distances, which can become
negative.
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In Quantile Regression one minimizes now following function:

(9)minβ∈<
∑n
i=1 ρτ (yi− ξ(xi,β))

Here, as opposed to OLS, the minimization is done for each subsection defined by ρτ , where
the estimate of the τ th-quantile function is achieved with the parametric function ξ(xi,β).
(Koenker and Hallock (2001))

Features that characterize Quantile Regression and differentiate it from other regression
methods are following:

1. The entire conditional distribution of the dependent variable Y can be characterized
through different values of τ

2. Heteroscedasticity can be detected

3. If the data is heteroscedastic, median regression estimators can be more efficient than
mean regression estimators

4. The minimization problem as illustrated in equation 9 can be solved efficiently by linear
programming methods, making estimation easy

5. Quantile functions are also equivariant to monotone transformations. That is
Qh(Y |X)(xτ ) = h(Q(Y |X)(xτ )), for any function

6. Quantiles are robust in regards to outliers ( Lee (2005) )

44.2.2 A graphical illustration of Quantile Regression

Before proceeding to a numerical example, the following subsection seeks to graphically
illustrate the concept of Quantile Regression. First, as a starting point for this illustration,
consider figure 1. For a given explanatory value of xi the density for a conditional dependent
variable Y is indicated by the size of the balloon. The bigger the balloon, the higher is
the density, with the mode4, i.e. where the density is the highest, for a given xi being
the biggest balloon. Quantile Regression essentially connects the equally sized balloons,
i.e. probabilities, across the different values of xi, thereby allowing one to focus on the
interrelationship between the explanatory variable xi and the dependent variable Y for the
different quantiles, as can be seen in figure 2. These subsets, marked by the quantile lines,
reflect the probability density of the dependent variable Y given xi.

4 http://en.wikipedia.org/wiki/mode
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Figure 23: Figure 1: Probabilities of occurrence for individual explanatory variables

The example used in figure 2 is originally from Koenker and Hallock (2000), and il-
lustrates a classical empirical application, Ernst Engel’s (1857) investigation into the
relationship of household food expenditure, being the dependent variable, and house-
hold income as the explanatory variable. In Quantile Regression the conditional func-
tion of QY |X(τ |x) is segmented by the τ th-quantile. In the analysis, the τ th-quantiles
τ ∈ {0,05;0,1;0,25;0,5;0,75;0,9;0,95}, indicated by the thin blue lines that separate the
different color sections, are superimposed on the data points. The conditional median
(τ = 0,5) is indicated by a thick dark blue line, the conditional mean by a light yellow
line. The color sections thereby represent the subsections of the data as generated by the
quantiles.

175



Quantile Regression

Figure 24: Figure 2: Engels Curve, with the median highlighted in dark blue and the
mean in yellow

Figure 2 can be understood as a contour plot representing a 3-D graph, with food expen-
diture and income on the respective y and x axis. The third dimension arises from the
probability density of the respective values. The density of a value is thereby indicated
by the darkness of the shade of blue, the darker the color, the higher is the probability of
occurrence. For instance, on the outer bounds, where the blue is very light, the probability
density for the given data set is relatively low, as they are marked by the quantiles 0,05 to
0,1 and 0,9 to 0,95. It is important to notice that figure 2 represents for each subsections
the individual probability of occurrence, however, quantiles utilize the cumulative proba-
bility of a conditional function. For example, τ of 0,05 means that 5% of observations are
expected to fall below this line, a τ of 0,25 for instance means that 25% of the observations
are expected to fall below this and the 0,1 line.

The graph in figure 2, suggests that the error variance is not constant across the distribution.
The dispersion of food expenditure increases as household income goes up. Also the data
is skewed to the left, indicated by the spacing of the quantile lines that decreases above
the median and also by the relative position of the median which lies above the mean.
This suggests that the axiom of homoscedasticity is violated, which OLS relies on. The
statistician is therefore well advised to engage in an alternative method of analysis such as
Quantile Regression, which is actually able to deal with heteroscedasticity.

44.2.3 A Quantile Regression Analysis

In order to give a numerical example of the analytical power of Quantile Regression and to
compare it within the boundaries of a statistical application with OLS the following section
will be analyzing some selected variables of the Boston Housing dataset which is available
at the md-base website. The data was first analyzed by Belsley, Kuh, and Welsch (1980).
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The original data comprised 506 observations for 14 variables stemming from the census of
the Boston metropolitan area.

This analysis utilizes as the dependent variable the median value of owner occupied homes (a
metric variable, abbreviated with H) and investigates the effects of 4 independent variables
as shown in table 1. These variables were selected as they best illustrate the difference
between OLS and Quantile Regression. For the sake of simplicity of the analysis, it was
neglected for now to deal with potential difficulties related to finding the correct specification
of a parametric model. A simple linear regression model therefore was assumed. For
the estimation of asymptotic standard errors see for example Buchinsky (1998), which
illustrates the design-matrix bootstrap estimator or alternatively Powell (1986) for kernel
based estimation of asymptotic standard errors.

Table1: The
explanatory
variablesName

Short What it is type

NonrTail T Proportion of
non-retail busi-
ness acres

metric

NoorOoms O Average num-
ber of rooms per
dwelling

metric

Age A Proportion of
owner-built
dwellings prior
to 1940

metric

PupilTeacher P Pupil-teacher ra-
tio

metric

In the following firstly an OLS model was estimated. Three digits after the comma were
indicated in the tables as some of the estimates turned out to be very small.

(10)E[Hi|Ti,Oi,Ai,Pi] = α+βTi+ δOi+γAi+λPi

Computing this via XploRe one obtains the results as shown in the table below.

Table2:
OLS
estimatesα̂

β̂ δ̂ γ̂ λ̂

36,459 0,021 38,010 0,001 -0,953

Analyzing this data set via Quantile Regression, utilizing the τ th quantiles τ ∈
(0,1;0,3;0,5;0,7;0,9) the model is characterized as follows:

(11)QH [τ |Ti,Oi,Ai,Pi] = ατ +βτTi+ δτOi+γτAi+λτPi

Just for illustrative purposes and to further foster the understanding of the reader for
Quantile Regression, the equation for the 0,1th quantile is briefly illustrated, all others
follow analogous:
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(12)min [ρ0,1(y1−x1β) +ρ0,1(y2−x2β) + ...+ρ0,1(yn−xnβ)]

equation 12 with ρ0,1(yi−xiβ) =
{

0,1(yi−xiβ) if (yi−xiβ)> 0
−0,9(yi−xiβ) if (yi−xiβ)< 0

Table3:
Quantile
Re-
gression
estimatesτ

α̂τ β̂τ δ̂τ γ̂τ λ̂τ

0,1 23,442 0,087 29,606 -0,022 -0,443
0,3 15,7130 -0,001 45,281 -0,037 -0,617
0,5 14,8500 0,022 53,252 -0,031 -0,737
0,7 20,7910 -0,021 50,999 -0,003 -0,925
0,9 34,0310 -0,067 51,353 0,004 -1,257

Now if one compares the results for the estimates of OLS from table 2 and Quantile Re-
gression, table 3, one finds that the latter method can make much more subtle inferences
of the effect of the explanatory variables on the dependent variable. Of particular interest
are thereby quantile estimates that are relatively different as compared to other quantiles
for the same estimate.

Probably the most interesting result and most illustrative in regards to an understanding
of the functioning of Quantile Regression and pointing to the differences with OLS are the
results for the independent variable of the proportion of non-retail business acres (Ti). OLS
indicates that this variable has a positive influence on the dependent variable, the value of
homes, with an estimate of β̂ = 0,021, i.e. the value of houses increases as the proportion
of non-retail business acres (Ti) increases in regards to the Boston Housing data.

Looking at the output that Quantile Regression provides us with, one finds a more differen-
tiated picture. For the 0,1 quantile, we find an estimate of β̂0,1 = 0,087 which would suggest
that for this low quantile the effect seems to be even stronger than is suggested by OLS.
Here house prices go up when the proportion of non-retail businesses (Ti) goes up, too.
However, considering the other quantiles, this effect is not quite as strong anymore, for the
0,7th and 0,9th quantile this effect seems to be even reversed indicated by the parameter
β̂0,7 = −0,021 and β̂0,9 = −0,062. These values indicate that in these quantiles the house
price is negatively influenced by an increase of non-retail business acres (Ti). The influence
of non-retail business acres (Ti) seems to be obviously very ambiguous on the dependent
variable of housing price, depending on which quantile one is looking at. The general rec-
ommendation from OLS that if the proportion of non-retail business acres (Ti) increases,
the house prices would increase can obviously not be generalized. A policy recommendation
on the OLS estimate could therefore be grossly misleading.

One would intuitively find the statement that the average number of rooms of a property
(Oi) positively influences the value of a house, to be true. This is also suggested by OLS with
an estimate of δ̂ = 38,099. Now Quantile Regression also confirms this statement, however,
it also allows for much subtler conclusions. There seems to be a significant difference
between the 0,1 quantile as opposed to the rest of the quantiles, in particular the 0,9th
quantile. For the lowest quantile the estimate is δ̂0,1 = 29,606, whereas for the 0,9th quantile

178



Conclusion

it is δ̂0,9 = 51,353. Looking at the other quantiles one can find similar values for the
Boston housing data set as for the 0,9th, with estimates of δ̂0,3 = 45,281, δ̂0,5 = 53,252, and
δ̂0,7 = 50,999 respectively. So for the lowest quantile the influence of additional number
of rooms (Oi) on the house price seems to be considerably smaller then for all the other
quantiles.

Another illustrative example is provided analyzing the proportion of owner-occupied units
built prior to 1940 (Ai) and its effect on the value of homes. Whereas OLS would indicate
this variable has hardly any influence with an estimate of γ̂ = 0,001, looking at Quantile
Regression one gets a different impression. For the 0,1th quantile, the age has got a negative
influence on the value of the home with γ̂0,1 = −0,022. Comparing this with the highest
quantile where the estimate is γ̂0,9 = 0,004, one finds that the value of the house is suddenly
now positively influenced by its age. Thus, the negative influence is confirmed by all other
quantiles besides the highest, the 0,9th quantile.

Last but not least, looking at the pupil-teacher ratio (Pi) and its influence on the value of
houses, one finds that the tendency that OLS indicates with a value of λ̂=−0,953 to be also
reflected in the Quantile Regression analysis. However, in Quantile Regression one can see
that the influence on the housing price of the pupils-teacher ratio (Pi) gradually increases
over the different quantiles, from the 0,1th quantile with an estimate of λ̂0,1 = −0,443 to
the 0,9th quantile with a value of λ̂0,9 =−1,257.

This analysis makes clear, that Quantile Regression allows one to make much more differ-
entiated statements when using Quantile Regression as opposed to OLS. Sometimes OLS
estimates can even be misleading what the true relationship between an explanatory and
a dependent variable is as the effects can be very different for different subsection of the
sample.

44.3 Conclusion

For a distribution function FY (y) one can determine for a given value of y the probability
τ of occurrence. Now quantiles do exactly the opposite. That is, one wants to determine
for a given probability τ of the sample data set the corresponding value y. In OLS, one
has the primary goal of determining the conditional mean of random variable Y , given
some explanatory variable xi , E[Y |xi]. Quantile Regression goes beyond this and enables
us to pose such a question at any quantile of the conditional distribution function. It
focuses on the interrelationship between a dependent variable and its explanatory variables
for a given quantile. Quantile Regression overcomes thereby various problems that OLS
is confronted with. Frequently, error terms are not constant across a distribution, thereby
violating the axiom of homoscedasticity. Also, by focusing on the mean as a measure of
location, information about the tails of a distribution are lost. And last but not least, OLS
is sensitive to extreme outliers, which can distort the results significantly. As has been
indicated in the small example of the Boston Housing data, sometimes a policy based upon
an OLS analysis might not yield the desired result as a certain subsection of the population
does not react as strongly to this policy or even worse, responds in a negative way, which
was not indicated by OLS.
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45 Numerical Comparison of Statistical
Software

45.1 Introduction

Statistical computations require an extra accuracy and are open to some errors such as
truncation or cancellation error etc. These errors occur as a result of binary representation
and finite precision and may cause inaccurate results. In this work we are going to discuss
the accuracy of the statistical software, different tests and methods available for measuring
the accuracy and the comparison of different packages.

45.1.1 Accuracy of Software

Accuracy can be defined as the correctness of the results. When a statistical software
package is used, it is assumed that the results are correct in order to comment on these
results. On the other hand it must be accepted that computers have some limitations. The
main problem is that the available precision provided by computer systems is limited. It
is clear that statistical software can not deliver such accurate results, which exceed these
limitations. However statistical software should recognize its limits and give clear indication
that these limits are reached. We have two types of precision generally used today:

• Single precision
• Double precision

Binary Representation and Finite Precision

As we discussed above under the problem of software accuracy lay the binary representation
and finite precision. In computer we don’t have real numbers. But we represent them with
a finite approximation.

Example: Assume that we want to represent 0.1 in single precision. The result will be as
follows:

0.1 = .00011001100110011001100110 = 0.99999964 (McCullough,1998)

It is clear that we can only approximate to 0.1 in binary form. This problem grows, if
we try to subtract two large numbers which differs only in the decimals. For instance
100000.1-100000 = .09375

With single precision we can only represent 24 significant binary digits, with other word 6-7
decimal digits. In double precision it is possible to represent 53 significant binary digits and
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15-17 significant decimal digits. Limitations of binary representation create five distinct
numerical ranges, which cause the loss of accuracy:

• negative overflow
• negative underflow
• zero
• positive underflow
• positive overflow

Overflow means that values have grown too large for the representation. Underflow means
that values are so small and so close to zero that causes to set to zero. Single and double
precision representations have different ranges.

Results of Binary Representation

This limitations cause different errors in different situations:

• Cancellation error results from subtracting two nearly equal numbers.
• Accumulation errors are successive rounding errors in a series of calculations summed up

to a total error. In this type of errors it is possible that only the rightmost digits of the
result is affected or the result has no single accurate digits.

• Another result of binary representation and finite precision is that two formulas which
are algebraically equivalent may not be equivalent numerically. For instance:

10000∑
n=1

n−2

10000∑
n=1

(10001−n)−2

First formula adds the numbers in ascending order, whereas the second in descending order.
In the first formula the smallest numbers reached at the very end of the computation, so
that these numbers are all lost to rounding error. The error is 650 times greater than the
second.(McCullough,1998)

• Truncation error can be defined as approximation error which results from the limitations
of binary representation.

Example:

sinx= x− x
3

3! + x5

5! −
x7

7! + · · ·

Difference between the true value of sin(x) and the result achieved by summing up finite
number of terms is truncation error. (McCullough,1998)
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• Algorithmic errors are another reason of inaccuracies. There can be different ways of
calculating a quantity and these different methods may be unequally accurate. For ex-
ample according to Sawitzki (1994) in a single precision environment using the following
formula in order to calculate variance :

S2 = (1/(1−n)(
∑

x2
i −nx̄2))

45.1.2 Measuring Accuracy

Due to limits of the computers some problems occur in calculating statistical values. We
need a measure which shows us the degree of accuracy of a computed value. This mea-
surement base on the difference between the computed value (q) and the real value (c).An
oft-used measure is LRE (number of the correct significant digits)(McCullough,1998)

LRE =− log10 [|q− c|/|c|]

Rules:

• q should be close to c (less than 2). If they are not, set LRE to zero
• If LRE is greater than number of the digits in c, set LRE to number of the digits in c.
• If LRE is less than unity, set it to zero.

45.2 Testing Statistical Software

In this part we are going to discuss two different tests which aim for measuring the accuracy
of the software: Wilkinson Test (Wilkinson, 1985) and NIST StRD Benchmarks.

45.2.1 Wilkinson’s Statistic Quiz

Wilkinson dataset “NASTY” which is employed in Wilkinson’s Statistic Quiz is a dataset
created by Leland Wilkinson (1985). This dataset consist of different variables such as
“Zero” which contains only zeros, “Miss” with all missing values, etc. NASTY is a reasonable
dataset in the sense of values it contains. For instance the values of “Big” in “NASTY”
are less than U.S. Population or “Tiny” is comparable to many values in engineering. On
the other hand the exercises of the “Statistic Quiz” are not meant to be reasonable. These
tests are designed to check some specific problems in statistical computing. Wilkinson’s
Statistics Quiz is an entry level test.
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45.2.2 NIST StRD Benchmarks

These benchmarks consist of different datasets designed by National Institute of Standards
and Technology in different levels of difficulty. The purpose is to test the accuracy of
statistical software regarding to different topics in statistics and different level of difficulty.
In the webpage of “Statistical Reference Datasets” Project there are five groups of datasets:

• Analysis of Variance
• Linear Regression
• Markov Chain Monte Carlo
• Nonlinear Regression
• Univariate Summary Statistics

In all groups of benchmarks there are three different types of datasets: Lower level difficulty
datasets, average level difficulty datasets and higher level difficulty datasets. By using these
datasets we are going to explore whether the statistical software deliver accurate results to
15 digits for some statistical computations.

There are 11 datasets provided by NIST among which there are six datasets with lower
level difficulty, two datasets with average level difficulty and one with higher level difficulty.
Certified values to 15 digits for each dataset are provided for the mean (μ), the standard
deviation (σ), the first-order autocorrelation coefficient (ρ).

In group of ANOVA-datasets there are 11 datasets with levels of difficulty, four lower,
four average and three higher. For each dataset certified values to 15 digits are provided
for between treatment degrees of freedom, within treatment. degrees of freedom, sums
of squares, mean squares, the F-statistic , the R2, the residual standard deviation. Since
most of the certified values are used in calculating the F-statistic, only its LRE λF will be
compared to the result of regarding statistical software.

For testing the linear regression results of statistical software NIST provides 11 datasets
with levels of difficulty two lower, two average and seven higher. For each dataset we have
the certified values to 15 digits for coefficient estimates, standard errors of coefficients, the
residual standard deviation, R2, the analysis of variance for linear regression table, which
includes the residual sum of squares. LREs for the least accurate coefficients λβ, standard
errors λσ and Residual sum of squares λr will be compared. In nonliner regression dataset
group there are 27 datasets designed by NIST with difficulty eight lower ,eleven average
and eight higher. For each dataset we have certified values to 11 digits provided by NIST
for coefficient estimates, standard errors of coefficients, the residual sum of squares, the
residual standard deviation, the degrees of freedom.

In the case of calculation of nonlinear regression we apply curve fitting method. In this
method we need starting values in order to initialize each variable in the equation. Then
we generate the curve and calculate the convergence criterion (ex. sum of squares). Then
we adjust the variables to make the curve closer to the data points. There are several
algorithms for adjusting the variables:

• The method of Marquardt and Levenberg
• The method of linear descent
• The method of Gauss-Newton
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One of these methods is applied repeatedly, until the difference in the convergence criterion
is smaller than the convergence tolerance.

NIST provides also two sets of starting values: Start I (values far from solution), Start
II (values close to solution). Having Start II as initial values makes it easier to reach an
accurate solution. Therefore Start I solutions will be preffered.

Other important settings are as follows:

• the convergence tolerance (ex. 1E-6)
• the method of solution (ex. Gauss Newton or Levenberg Marquardt)
• the convergence criterion (ex. residual sum of squares (RSS) or square of the maximum

of the parameter differences)

We can also choose between numerical and analytic derivatives.

45.3 Testing Examples

45.3.1 Testing Software Package: SAS, SPSS and S-Plus

In this part we are going to discuss the test results of three statistical software packages
applied by M.D. McCullough. In McCullough’s work SAS 6.12, SPSS 7.5 and S-Plus 4.0
are tested and compared in respect to certified LRE values provided by NIST. Comparison
will be handled according to the following parts:

• Univariate Statistics
• ANOVA
• Linear Regression
• Nonlinear Regression
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Univariate Statistics

Figure 25: Table 1: Results from SAS for Univariate Statistics (McCullough,1998)

All values calculated in SAS seem to be more or less accurate. For the dataset NumAcc1 p-
value can not be calculated because of the insufficient number of observations. Calculating
standard deviation for datasets NumAcc3 (average difficulty) and NumAcc 4 (high difficulty)
seem to stress SAS.
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Figure 26: Table 2: Results from SPSS for Univariate Statistics (McCullough,1998)

All values calculated for mean and standard deviation seem to be more or less accurate.
For the dataset NumAcc1 p-value can not be calculated because of the insufficient number
of observations.Calculating standard deviation for datasets NumAcc3 and -4 seem to stress
SPSS,as well. For p-values SPSS represent results with only 3 decimal digits which causes
an understate of first and an overstate of last p-values regarding to accuracy.
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Figure 27: Table 3: Results from S-Plus for Univariate Statistics (McCullough,1998)

All values calculated for mean and standard deviation seem to be more or less accurate.
S-Plus have also problems in calculating standard deviation for datasets NumAcc3 and -4.
S-Plus does not show a good performance in calculating the p-values.
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Analysis of Variance

Figure 28: Table 4: Results from SAS for Analysis of Variance(McCullough,1998)

Results:

• SAS can solve only the ANOVA problems of lower level difficulty.
• F-Statistics for datasets of average or higher difficulty can be calculated with very poor

performance and zero digit accuracy.
• SPSS can display accurate results for datasets with lower level difficulty, like SAS.
• Performance of SPSS in calculating ANOVA is poor.
• For dataset “AtmWtAg” SPSS displays no F-Statistic which seems more logical instead

of displaying zero accurate results.
• S-Plus handels ANOVA problem better than other softwares.
• Even for higher difficulty datasets this package can display more accurate results than

other. But still results for datasets with high difficulty are not enough accurate.
• S-Plus can solve the average difficulty problems with a sufficient accuracy.
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Linear Regression

Figure 29: Table 5: Results from SAS for Linear Regression(McCullough,1998)

SAS delivers no solution for dataset Filip which is ten degree polynomial. Except Filip SAS
can display more or less accurate results. But the performance seems to decrease for higher
difficulty datasets, especially in calculating coefficients
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Figure 30: Table 6: Results from SPSS for Linear Regression(McCullough,1998)

SPSS has also Problems with “Filip” which is a 10 degree polynomial. Many packages fail
to compute values for it. Like SAS, SPSS delivers lower accuracy for high level datasets
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Figure 31: Table 7: Results from S-Plus for Linear Regression(McCullough,1998)

S-Plus is the only package which delivers a result for dataset “Filip”. The accuracy of Result
for Filip seem not to be poor but average. Even for higher difficulty datasets S-Plus can
calculate more accurate results than other software packages. Only coefficients for datasets
“Wrampler4” and “-5” is under the average accuracy.
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Nonlinear Regression

Figure 32: Table 8: Results from SAS for Nonlinear Regression(McCullough,1998)

For the nonlinear Regression two setting combinations are tested for each software, because
different settings make a difference in the results.As we can see in the table in SAS preffered
combination produce better results than default combination. In this table results produced
using default combination are in paranthesis. Because 11 digits are provided for certified
values by NIST, we are looking for LRE values of 11.

Preffered combination :

• Method:Gauss-Newton
• Criterion: PARAM
• Tolerance: 1E-6
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Figure 33: Table 9: Results from SPSS for Nonlinear Regression(McCullough,1998)

Also in SPSS preffered combination shows a better performance than default options. All
problems are solved with initial values “start I” whereas in SAS higher level datasets are
solved with Start II values.

Preffered Combination:

• Method:Levenberg-Marquardt
• Criterion:PARAM
• Tolerance: 1E-12
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Figure 34: Table 10: Results from S-Plus for Nonlinear Regression(McCullough,1998)

As we can see in the table preffered combination is also in S-Plus better than default
combination. All problems except “MGH10” are solved with initial values “start I”. We may
say that S-Plus showed a better performance than other software in calculating nonlinear
regression.

Preffered Combination:

• Method:Gauss-Newton
• Criterion:RSS
• Tolerance: 1E-6

Results of the Comparison

All packages delivered accurate results for mean and standard deviation in univariate statis-
tics.There are no big differences between the tested statistical software packages. In ANOVA
calculations SAS and SPSS can not pass the average difficulty problems, whereas S-Plus
delivered more accurate results than others. But for high difficulty datasets it also produced
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poor results. Regarding linear regression problems all packages seem to be reliable. If we
examine the results for all software packages, we can say that the success in calculating the
results for nonlinear regression greatly depends on the chosen options.

Other important results are as follows:

• S-Plus solved from Start II one time.
• SPSS never used Start II as initial values, but produce one time zero accurate digits.
• SAS used Start II three times and produced three times zero accurate digits.

45.3.2 Comparison of different versions of SPSS

In this part we are going to compare an old version with a new version of SPSS in order
to see whether the problems in older version are solved in the new one. In this part we
compared SPSS version 7.5 with SPSS version 12.0. LRE values for version 7.5 are taken
from an article by B.D. McCullough (see references). We also applied these tests to version
12.0 and calculated regarding LRE values. We chose one dataset from each difficulty groups
and applied univariate statistics, ANOVA and linear regression in version 12.0. Source for
the datasets is NIST Statistical Reference Datasets Archive. Then we computed LRE values
for each dataset by using the certified values provided by NIST in order to compare two
versions of SPSS.

Univariate Statistics

Difficulty: Low

Our first dataset is PiDigits with lower level difficulty which is designed by NIST in order
to detect the deficiencies in calculating univariate statistical values.

Certified Values for PiDigits are as follows:

• Sample Mean : 4.53480000000000
• Sample Standard Deviation : 2.86733906028871

As we can see in the table 13 the results from SPSS 12.0 match the certified values provided
by NIST. Therefore our LREs for mean and standard deviation are λµ: 15, λδ: 15. In version
7.5 LRE values were λµ: 14.7, λδ: 15. (McCullough,1998)

Difficulty: Average

Second dataset is NumAcc3 with average difficulty from NIST datasets for univariate statis-
tics. Certified Values for NumAcc3 are as follows:

• Sample Mean : 1000000.2
• Sample Standard Deviation : 0.1

In the table 14 we can see that calculated mean value is the same with the certified value by
NIST. Therefore our LREs for mean is λµ: 15. However the standard deviation value differs
from the certified value. So the calculation of LRE for standard deviation is as follows:

λδ : -log10 |0,10000000003464-0,1|/|0,1| = 9.5
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LREs for SPSS v 7.5 were λµ: 15, λδ: 9.5. (McCullough,1998)

Difficulty: High

Last dataset in univariate statistics is NumAcc4 with high level of difficulty. Certified Values
for NumAcc4 are as follows:

• Sample Mean : 10000000.2
• Sample Standard Deviation : 0.1

Also for this dataset we do not have any problems with computed mean value. Therefore
LRE is λµ: 15. However the standard deviation value does not match to the certified one.
So we should calculate the LRE for standard deviation as follows:

λδ : -log10 |0,10000000056078-0,1|/|0,1| = 8.3

LREs for SPSS v 7.5 were λµ: 15, λδ : 8.3 (McCullough,1998)

For this part of our test we can say that there is no difference between two versions of SPSS.
For average and high difficulty datasets delivered standard deviation results have still an
average accuracy.

Analysis of Variance

Difficulty: Low

The dataset which we used for testing SPSS 12.0 regarding lower difficulty level problems
is SiRstv. Certified F Statistic for SiRstv is 1.18046237440255E+00

• LRE : λF : -log10 | 1,18046237440224- 1,18046237440255|/ |1,18046237440255| = 12,58
• LRE for SPSS v 7.5 : λF : 9,6 (McCullough, 1998)

Difficulty: Average

Our dataset for average difficulty problems is AtmWtAg . Certified F statistic value for
AtmWtAg is 1.59467335677930E+01.

• LREs : λF : -log10 | 15,9467336134506- 15,9467335677930|/| 15,9467335677930| = 8,5
• LREs for SPSS v 7.5 : λF : miss

Difficulty: High

We used the dataset SmnLsg07 in order to test high level difficulty problems. Certified F
value for SmnLsg07 is 2.10000000000000E+01

• LREs : λF : -log10 | 21,0381922055595 - 21|/| 21| = 2,7
• LREs for SPSS v 7.5 : λF : 0

ANOVA results computed in version 12.0 are better than those calculated in version 7.5.
However the accuracy degrees are still too low.

Linear Regression

Difficulty: Low
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Our lower level difficulty dataset is Norris for linear regression. Certified values for Norris
are as follows:

• Sample Residual Sum of Squares : 26.6173985294224

•

Figure 35: Table 17: Coefficient estimates for Norris(www.itl.nist.gov)

• LREs : λr : 9,9 λβ : 12,3 λσ : 10,2
• LREs for SPSS v 7.5 : λr: 9,9 , λβ : 12,3 , λσ : 10,2 (McCullough, 1998)

Difficulty: Average

We used the dataset NoInt1 in order to test the performance in average difficulty dataset.
Regression model is as follows:

y = B1*x + e

Certified Values for NoInt1 :

• Sample Residual Sum of Squares : 127,272727272727
• Coefficient estimate : 2.07438016528926, standard deviation : 0.16528925619834E-

0(www.itl.nist.gov)
• LREs: λr:12,8 λβ: 15 λσ: 12,9
• LREs for SPSS v. 7.5 : λr: 12,8 , λβ: 14,7 , λσ: 12,5 (McCullough, 1998)

Difficulty: High

Our high level difficulty dataset is Longley designed by NIST.

• Model: y =B0+B1*x1 + B2*x2 + B3*x3 + B4*x4 + B5*x5 + B6*x6 +e
• LREs :

• λr: -log10 |836424,055505842-836424,055505915|/ |836424,055505915| = 13,1
• λβ : 15
• λσ : -log10 | 0,16528925619836E-01 – 0,16528925619834E-01|/ |0,16528925619834E-

01| = 12,9
• LREs for SPSS v. 7.5 : λr: 12,8 , λβ : 14,7 , λσ : 12,5 (McCullough, 1998)

As we conclude from the computed LREs, there is no big difference between the results of
two versions for linear regression.

45.4 Conclusion

By applying these test we try to find out whether the software are reliable and deliver accu-
rate results or not. However based on the results we can say that different software packages
deliver different results for same the problem which can lead us to wrong interpretations
for statistical research questions.
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In specific we can that SAS, SPSS and S-Plus can solve the linear regression problems better
in comparision to ANOVA Problems. All three of them deliver poor results for F statistic
calculation.

From the results of comparison two different versions of SPSS we can conclude that the
difference between the accuracy of the results delivered by SPSS v.12 and v.7.5 is not great
considering the difference between the version numbers. On the other hand SPSS v.12 can
handle the ANOVA Problems much better than old version. However it has still problems
in higher difficulty problems.
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46 Numerics in Excel

The purpose of this paper is to evaluate the accuracy of MS Excel in terms of statistical
procedures and to conclude whether the MS Excel should be used for (statistical) scientific
purposes or not. The evaulation is made for Excel versions 97, 2000, XP and 2003.

According to the literature, there are three main problematic areas for Excel if it is used
for statistical calculations. These are

• probability distributions,
• univariate statistics, ANOVA and Estimations (both linear and non-linear)
• random number generation.

If the results of statistical packages are assessed, one should take into account that the
acceptable accuracy of the results should be achieved in double precision (which means
that a result is accepted as accurate if it possesses 15 accurate digits) given that the reliable
algorithms are capable of delivering correct results in double precision, as well. If the
reliable algorithms can not retrieve results in double precision, it is not fair to anticipate
that the package (evaluated) should achieve double precision. Thus we can say that the
correct way for evaluating the statistical packages is assessing the quality of underlying
algorithm of statistical calculations rather than only counting the accurate digits of results.
Besides, test problems must be reasonable which means they must be amenable to solution
by known reliable algorithms. (McCullough & Wilson, 1999, S. 28)

In further sections, our judgement about the accuracy of MS Excel will base on certified
values and tests. As basis we have Knüsel’s ELV software for probability distributions,
StRD (Statistical Reference Datasets) for Univariate Statistics, ANOVA and Estimations
and finally Marsaglia’s DIEHARD for Random Number Generation. Each of the tests and
certified values will be explained in the corresponding sections.

46.1 Assessing Excel Results for Statistical Distributions

As we mentioned above our judgement about Excel’s calculations for probability distribu-
tions will base on Knüsel’s ELV Program which can compute probabilities and quantiles of
some elementary statistical distributions. Using ELV, the upper and lower tail probabili-
ties of all distributions are computed with six significant digits for probabilities as small as
10−100 and upper and lower quantiles are computed for all distributions for tail probabilities
P with 10−12 ≤ P ≤

1
2 . (Knüsel, 2003, S.1)

In our benchmark Excel should display no inaccurate digits. If six digits are displayed, then
all six digits should be correct. If the algorithm is only accurate to two digits, then only
two digits should be displayed so as not to mislead the user (McCullough & Wilson, 2005,
S. 1245)
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In the following sub-sections the exact values in the tables are retrieved from Knüsel’s ELV
software and the acceptable accuracy is in single presicion, because even the best algorithms
can not achieve 15 correct digits in most cases, if the probability distributions are issued.

46.1.1 Normal Distribution

• Excel Function:NORMDIST
• Parameters: mean = 0, variance = 1, x (critical value)
• Computes: the tail probability Pr X ≤ x, whereas X denotes a random variable with a

standard normal distribution (with mean 0 and variance 1)

Figure 36: Table 1: (Knüsel, 1998, S.376)

As we can see in table 1, Excel 97, 2000 and XP encounter problems and computes small
probabilities in tail incorrectly (i.e for x = -8,3 or x = -8.2) However, this problem is fixed
in Excel 2003 (Knüsel, 2005, S.446).

46.1.2 Inverse Normal Distribution

• Excel Function: NORMINV
• Parameters: mean = 0, variance = 1, p (probability for X < x)
• Computes: the x value (quantile)
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X denotes a random variable with a standard normal distribution. In contrast to “NOR-
MDIST” function issued in the last section, p is given and quantile is computed.

If used, Excel 97 prints out quantiles with 10 digits although none of these 10 digits may be
correct if p is small. In Excel 2000 and XP, Microsoft tried to fix errors, although results are
not sufficient (See table 2). However in Excel 2003 the problem is fixed entirely. (Knüsel,
2005, S.446)

Figure 37: Table 2: (Knüsel, 2002, S.110)

46.1.3 Inverse Chi-Square Distribution

• Excel Function: CHIINV
• Parameters: p (probability for X > x), n (degrees of freedom)
• Computes: the x value (quantile)

X denotes a random variable with a chi-square distribution with n degrees of freedom.
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Figure 38: Table 3: (Knüsel , 1998, S. 376)

Old Excel Versions: Although the old Excel versions show ten significant digits, only
very few of them are accurate if p is small (See table 3). Even if p is not small, the accurate
digits are not enough to say that Excel is sufficient for this distribution.

Excel 2003: Problem was fixed. (Knüsel, 2005, S.446)

46.1.4 Inverse F Distribution

• Excel Function: FINV
• Parameters: p (probability for X > x), n1, n2 (degrees of freedom)
• Computes: the x value (quantile)

X denotes a random variable with a F distribution with n1 and n2 degrees of freedom.
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Figure 39: Table 4: (Knüsel , 1998, S. 377)

Old Excel Versions: Excel prints out x values with 7 or more significant digits although
only one or two of these many digits are correct if p is small (See table 4).

Excel 2003: Problem fixed. (Knüsel, 2005, S.446)

46.1.5 Inverse t Distribution

• Excel Function: TINV
• Parameters: p (probability for |X| > x), n (degree of freedom)
• Computes: the x value (quantile)

X denotes a random variable with a t distribution with n degrees of freedom. Please note
that the |X| value causes a 2 tailed computation. (lower tail & high tail)
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Figure 40: Table 5: (Knüsel , 1998, S. 377)

Old Excel Versions: Excel prints out quantiles with 9 or more significant digits although
only one or two of these many digits are correct if p is small (See table 5).

Excel 2003: Problem fixed. (Knüsel, 2005, S.446)

46.1.6 Poisson Distribution

• Excel Function: Poisson
• Parameters: λ (mean), k (number of cases)
• Computes: the tail probability Pr X ≤ k

X denotes a random variable with a Poisson distribution with given parameters.
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Figure 41: Table 6: (McCullough & Wilson, 2005, S.1246)

Old Excel Versions: correctly computes very small probabilities but gives no result for
central probabilities near the mean (in the range about 0.5). (See table 6)

Excel 2003: The central probabilities are fixed. However, inaccurate results in the tail.
(See table 6)

The strange behaivour of Excel can be encountered for values λ150. (Knüsel, 1998,
S.375) It fails even for probabilities in the central range between 0.01 and 0.99 and even for
parameter values that cannot be judged as too extreme.

46.1.7 Binomial Distribution

• Excel Function: BINOMDIST
• Parameters: n (= number of trials) , υ(= probability for a success) , k(number of suc-

cesses)
• Computes: the tail probability Pr X ≤ k

-X denotes a random variable with a binoamial distribution with given parameters
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Figure 42: Table 7: (Knüsel, 1998, S.375)

Old Excel Versions: As we see in table 7, old versions of Excel correctly computes very
small probabilities but gives no result for central probabilities near the mean (same problem
with Poisson distribuiton on old Excel versions)

Excel 2003: The central probabilities are fixed. However, inaccurate results in the tail.
(Knüsel, 2005, S.446). (same problem with Poisson distribuiton on Excel 2003).

This strange behaivour of Excel can be encountered for values n > 1000. (Knüsel, 1998,
S.375) It fails even for probabilities in the central range between 0.01 and 0.99 and even for
parameter values that cannot be judged as too extreme.

46.1.8 Other problems

• Excel 97, 2000 and XP includes flaws by computing the hypergeometric distribution
(HYPERGEOM). For some values (N > 1030) no result is retrieved. This is prevented
on Excel 2003, but there is still no option to compute tail probabilities. So computation
of Pr {X = k} is possible, but computation of Pr {X ≤ k} is not. (Knüsel, 2005, S.447)

• Function GAMMADIST for gamma distribution retreives incorrect values on Excel 2003.
(Knüsel, 2005, S.447-448)

• Also the function BETAINV for inverse beta distribution computes incorrect values on
Excel 2003 (Knüsel, 2005, S. 448)
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46.2 Assessing Excel Results for Univariate Statistics,
ANOVA and Estimation (Linear & Non-Linear)

Our judgement about Excel’s calculations for univariate statistics, ANOVA and Estima-
tion will base on StRD which is designed by Statistical Engineering Division of National
Institute of Standards and Technology (NIST) to assist researchers in benchmarking statis-
tical software packages explicitly. StRD has reference datasets (real-world and generated
datasets) with certified computational results that enable the objective evaluation of sta-
tistical Software. It comprises four suites of numerical benchmarks for statistical software:
univariate summary statistics, one way analysis of variance, linear regression and nonlinear
regression and it includes several problems for each suite of tests. All problems have a
difficulty level:low, average or high.

By assessing Excel results in this section we are going to use LRE (log relative error) which
can be used as a score for accuracy of results of statistical packages. The number of correct
digits in results can be calculated via log relative error. Please note that for double precision
the computed LRE is in the range 0 - 15, because we can have max. 15 correct digits in
double precision.

Formula LRE:

λ= LRE(x) =−log10
(
|x−c|
|x|

)
c: the correct answer (certified computational result) for a particular test problem

x: answer of Excel for the same problem

46.2.1 Univariate Statistics

• Excel Functions: - AVERAGE, STDEV, PEARSON (also CORREL)

• Computes (respectively): mean, standard deviation, correlation coefficient

Figure 43: Table 8: (McCullough & Wilson, 2005, S.1247)
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Old Excel Versions: an unstable algorithm for calculation of the sample variance and
the correlation coefficient is used. Even for the low difficulty problems (datasets with letter
“l” in table 8) the old versions of Excel fail.

Excel 2003: Problem was fixed and the performance is acceptable. The accurate digits less
than 15 don’t indicate an unsuccessful implementation because even the reliable algorithms
can not retrieve 15 correct digits for these average and high difficulty problems (datasets
with letters “a” and “h” in table 8) of StRD.

46.2.2 ONEWAY ANOVA

• Excel Function: Tools – Data Analysis – ANOVA: Single Factor (requires Analysis Tool-
pak)

• Computes: df, ss, ms, F-statistic

Since ANOVA produces many numerical results (such as df, ss, ms, F), here only the LRE for
the final F-statistic is presented. Before assessing Excel’s performance one should consider
that a reliable algorithm for one way Analysis of Variance can deliver 8-10 digits for the
average difficulty problems and 4-5 digits for higher difficulty problems.

Figure 44: Table 9: (McCullough & Wilson, 2005, S.1248)

Old Excel Versions: Considering numerical solutions, delivering only a few digits of
accuracy for difficult problems is not an evidence for bad software, but retrieving 0 accurate
digits for average difficulty problems indicates bad software when calculating ANOVA.
(McCullough & Wilson, 1999, S. 31). For that reason Excel versions prior than Excel 2003
has an acceptable performance only on low-difficulty problems. It retrieves zero accurate
digits for difficult problems. Besides, negative results for “within group sum of squares”
and “between group sum of squares” are the further indicators of a bad algorithm used for
Excel. (See table 9)

Excel 2003: Problem was fixed (See table 9). The zero digits of accuracy for the Simon 9
test is no cause for concern, since this also occurs when reliable algorithms are employed.
Therefore the performance is acceptable. (McCullough & Wilson, 2005, S. 1248)
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46.2.3 Linear Regression

• Excel Function: LINEST
• Computes: All numerical results required by Linear Regression

Since LINEST produces many numerical results for linear regression, only the LRE for the
coefficients and standard errors of coefficients are taken into account. Table 9 shows the
lowest LRE values for each dataset as the weakest link in the chain in order to reflect the
worst estimations (smallest λβ-LRE and λσ-LRE) made by Excel for each linear regression
function.

Old Excel Versions: either doesn’t check for near-singularity of the input matrix or
checking it incorrectly, so the results for ill-conditioned Dataset “Filip (h)” include not a
single correct digit. Actually, Excel should have refused the solution and commit a warning
to user about the near singularity of data matrix. (McCullough & Wilson, 1999, S.32,33) .
However, in this case, the user is mislead.

Excel 2003: Problem is fixed and Excel 2003 has an acceptable performance. (see table
10)

Figure 45: Table 10: (McCullough & Wilson, 1999, S. 32)

46.2.4 Non-Linear Regression

When solving nonlinear regression using Excel, it is possible to make choices about:

1. method of derivative calculation: forward (default) or central numerical derivatives
2. convergence tolerance (default=1.E-3)
3. scaling (recentering) the variables
4. method of solution (default – GRG2 quasi-Newton method)

Excel’s default parameters don’t always produce the best solutions always (like all other
solvers). Therefore one needs to give different parameters and test the Excel-Solver for non-
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linear regression. In table 10 the columns A-B-C-D are combinations of different non-linear
options. Because changing the 1st and 4th option doesn’t affect the result, only 2nd and
3rd parameters are changed for testing:

• A: Default estimation
• B: Convergence Tolerance = 1E -7
• C: Automatic Scaling
• D: Convergence Tolerance = 1E -7 & Automatic Scaling

In Table 11, the lowest LRE principle is applied to simplify the assessment. (like in linear
reg.)

Results in table 11 are same for each Excel version (Excel 97, 2000, XP, 2003)

Figure 46: Table 11: (McCullough & Wilson, 1999, S. 34)

As we see in table 11, the non-linear option combination A produces 21 times, B 17 times,
C 20 times and D 14 times “0” accurate digits. which indicates that the performance of
Excel in this area is inadequate. Expecting to find all exact solutions for all problems with
Excel is not fair, but if it is not able to find the result, it is expected to warn user and
commit that the solution can not be calculated. Furthermore, one should emphasize that
other statistical packages like SPSS, S-PLUS and SAS exhibit zero digit accuracy only few
times (0 to 3) in these tests (McCullough & Wilson, 1999, S. 34).

46.3 Assessing Random Number Generator of Excel

Many statistical procedures employ random numbers and it is expected that the generated
random numbers are really random. Only random number generators should be used that
have solid theoretical properties. Additionally, statistical tests should be applied on samples
generated and only generators whose output has successfuly passed a battery of statistical
tests should be used. (Gentle, 2003)

Based on the facts explained above we should assess the quality of Random Number Gen-
eration by:
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• analysing the underlying algorithm for Random Number Generation.
• analysing the generators output stream. There are many alternatives to test the output of

a RNG. One can evaluate the generated output using static tests in which the generation
order is not important. These tests are goodness of fit tests. The second way of evaluating
the output stream is running a dynamic test on generator, whereas the generation order
of the numbers is important.

46.3.1 Excel’s RNG – Underlying algorithm

The objective of random number generation is to produce samples any given size that
are indistinguishable from samples of the same size from a U(0,1) distribution. (Gentle,
2003) For this purpose there are different algorithms to use. Excel’s algorithm for random
number generation is Wichmann–Hill algorithm. Wichmann–Hill is a useful RNG algorithm
for common applications, but it is obsolete for modern needs (McCullough & Wilson, 2005,
S. 1250). The formula for this random number generator is defined as follows:

Xi = 171.Xi−1mod30269

Yi = 172.Yi−1mod30307

Zi = 170.Zi−1mod30323

Ui = Xi
30269 + Yi

30307 + Zi
30323mod1

Wichmann–Hill is a congruential generator which means that it is a recursive aritmethical
RNG as we see in the formula above. It is a combination of three other linear congruential
generator and requires three seeds: X0Y0Z0.

Period, in terms of random number generation, is the number of calls that can be made
to the RNG before it begins to repeat. For that reason, having a long period is a quality
measure for random number generators. It is essential that the period of the generator be
larger than the number of random numbers to be used. Modern applications are increasingly
demanding longer and longer sequences of random numbers (i.e for using in Monte-Carlo
simulations) (Gentle, 2003)

The lowest acceptable period for a good RNG is 260 and the period of Wichmann-Hill RNG
is 6.95E+12 (≈ 243). In addition to this unacceptable performance, Microsoft claims that
the period of Wichmann-Hill RNG is 10E+13 Even if Excel’s RNG has a period of 10E+13,
it is still not sufficient to be an acceptable random number generator because this value is
also less than 260. (McCullough & Wilson, 2005, S. 1250)

Furthermore it is known that RNG of Excel produces negative values after the RNG exe-
cuted many times. However a correct implementation of a Wichmann-Hill Random Number
Generator should produce only values between 0 and 1. (McCullough & Wilson, 2005, S.
1249)

46.3.2 Excel’s RNG – The Output Stream

As we discussed above, it is not sufficient to discuss only the underlying algorithm of a
random number generation. One needs also some tests on output stream of a random num-
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ber generator while assessing the quality of this random number generator. So a Random
Number Generator should produce output which passes some tests for randomness. Such a
battery of tests, called DIEHARD, has been prepared by Marsaglia. A good RNG should
pass almost all of the tests but as we can see in table 12 Excel can pass only 11 of them (7
failure), although Microsoft has declaired Wichmann–Hill Algorithm is implemented for Ex-
cel’s RNG. However, we know that Wichmann-Hill is able to pass 16 tests from DIEHARD
(McCullough & Wilson, 1999, S. 35).

Due to reasons explained in previous and this section we can say that Excel’s performance is
inadequate (because of period length, incorrect implementation Wichmann Hill Algorithm,
which is already obsolete, DIEHARD test results)

Figure 47: Table 12: (McCullough & Wilson, 1999, S. 35)

46.4 Conclusion

Old versions of Excel (Excel 97, 2000, XP) :

• shows poor performance on following distributions: Normal, F, t, Chi Square, Binomial,
Poisson, Hypergeometric

• retrieves inadequate results on following calculations: Univariate statistics, ANOVA,
linear regression, non-linear regression

• has an unacceptable random number generator

For those reasons, we can say that use of Excel 97, 2000, XP for (statistical) scientific
purposes should be avoided.

Although several bugs are fixed in Excel 2003, still use of Excel for (statistical) scientific
purposes should be avoided because it:

• has a poor performance on following distributions: Binomial, Poisson, Gamma, Beta
• retrieves inadequate results for non-linear regression
• has an obsolete random number generator.
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48 Glossary

This is a glossary of the book.

48.1 P

primary data

Original data that have been collected specially for the purpose in mind.

48.2 S

secondary data

Data that have been collected for another purpose and where we will use Statistical Method
with the Primary Data.
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